Claudia Castagna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7706613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caspase-3 Mediated Cell Death in the Normal Development of the Mammalian Cerebellum. International Journal of Molecular Sciences, 2018, 19, 3999.	1.8	123
2	Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig. Annals of Anatomy, 2016, 204, 11-28.	1.0	61
3	Apoptosis of undifferentiated progenitors and granule cell precursors in the postnatal human cerebellar cortex correlates with expression of BCL-2, ICE, and CPP32 proteins. Journal of Comparative Neurology, 1998, 399, 359-372.	0.9	44
4	Molecular morphology of neuronal apoptosis: Analysis of caspase 3 activation during postnatal development of mouse cerebellar cortex. Journal of Molecular Histology, 2004, 35, 621-629.	1.0	26
5	Ex vivo imaging of active caspase 3 by a FRET-based molecular probe demonstrates the cellular dynamics and localization of the protease in cerebellar granule cells and its regulation by the apoptosis-inhibiting protein survivin. Molecular Neurodegeneration, 2016, 11, 34.	4.4	23
6	Apoptosis of the cerebellar neurons. Histology and Histopathology, 2008, 23, 367-80.	0.5	20
7	The Reeler Mouse: A Translational Model of Human Neurological Conditions, or Simply a Good Tool for Better Understanding Neurodevelopment?. Journal of Clinical Medicine, 2019, 8, 2088.	1.0	19
8	Neuronal Cell Death: An Overview of Its Different Forms in Central and Peripheral Neurons. Methods in Molecular Biology, 2015, 1254, 1-18.	0.4	18
9	Cell death and neurodegeneration in the postnatal development of cerebellar vermis in normal and Reeler mice. Annals of Anatomy, 2016, 207, 76-90.	1.0	16
10	The Phosphorylated Form of the Histone H2AX (γH2AX) in the Brain from Embryonic Life to Old Age. Molecules, 2021, 26, 7198.	1.7	16
11	In vivo analysis reveals different apoptotic pathways in pre- and postmigratory cerebellar granule cells of rabbit. Journal of Neurobiology, 2004, 60, 437-452.	3.7	15
12	Protein S100 immunoreactivity in glial cells and neurons of the Japanese quail brain. Journal of Chemical Neuroanatomy, 2003, 25, 195-212.	1.0	14
13	Autophagy Regulates the Post-Translational Cleavage of BCL-2 and Promotes Neuronal Survival. Scientific World Journal, The, 2010, 10, 924-929.	0.8	14
14	Post-natal development of the Reeler mouse cerebellum: An ultrastructural study. Annals of Anatomy, 2014, 196, 224-235.	1.0	13
15	The number of Purkinje neurons and their topology in the cerebellar vermis of normal and reln haplodeficient mouse. Annals of Anatomy, 2016, 207, 68-75.	1.0	10
16	Alterations of Cell Proliferation and Apoptosis in the Hypoplastic Reeler Cerebellum. Frontiers in Cellular Neuroscience, 2016, 10, 141.	1.8	9
17	Editorial: Reelin-Related Neurological Disorders and Animal Models. Frontiers in Cellular Neuroscience, 2016, 10, 299.	1.8	2
18	Decreased Expression of Synaptophysin 1 (SYP1 Major Synaptic Vesicle Protein p38) and Contactin 6 (CNTN6/NB3) in the Cerebellar Vermis of reln Haplodeficient Mice. Cellular and Molecular Neurobiology, 2019, 39, 833-856.	1.7	2