
Steven D Lacey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7706148/publications.pdf Version: 2024-02-01

STEVEN D LACEY

#	Article	IF	CITATIONS
1	High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6316-6322.	3.3	119
2	Stable Multimetallic Nanoparticles for Oxygen Electrocatalysis. Nano Letters, 2019, 19, 5149-5158.	4.5	94
3	Ultrafast, Controllable Synthesis of Sub-Nano Metallic Clusters through Defect Engineering. ACS Applied Materials & Interfaces, 2019, 11, 29773-29779.	4.0	28
4	Scalable Dry Processing of Binder-Free Lithium-Ion Battery Electrodes Enabled by Holey Graphene. ACS Applied Energy Materials, 2019, 2, 2990-2997.	2.5	55
5	Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature Materials, 2019, 18, 608-613.	13.3	343
6	Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K. Nature Energy, 2018, 3, 148-156.	19.8	96
7	Extrusionâ€Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes. Advanced Materials, 2018, 30, e1705651.	11.1	241
8	Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359, 1489-1494.	6.0	1,065
9	Textile Inspired Lithium–Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways. Advanced Materials, 2018, 30, 1704907.	11.1	92
10	Reduced graphene oxide film with record-high conductivity and mobility. Materials Today, 2018, 21, 186-192.	8.3	182
11	<i>In Situ</i> High Temperature Synthesis of Single-Component Metallic Nanoparticles. ACS Central Science, 2017, 3, 294-301.	5.3	34
12	Holey Carbon Nanotubes from Controlled Air Oxidation. Advanced Functional Materials, 2017, 27, 1700762.	7.8	21
13	Ultrahigh-Capacity Lithium–Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes. Nano Letters, 2017, 17, 3252-3260.	4.5	132
14	Mesoporous, Three-Dimensional Wood Membrane Decorated with Nanoparticles for Highly Efficient Water Treatment. ACS Nano, 2017, 11, 4275-4282.	7.3	392
15	Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017, 3, e1601659.	4.7	647
16	Treeâ€Inspired Design for Highâ€Efficiency Water Extraction. Advanced Materials, 2017, 29, 1704107.	11.1	494
17	Highly Anisotropic Conductors. Advanced Materials, 2017, 29, 1703331.	11.1	80
18	Inverted battery design as ion generator for interfacing with biosystems. Nature Communications, 2017, 8, 15609.	5.8	21

STEVEN D LACEY

#	Article	IF	CITATIONS
19	Universal, In Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High-Temperature Pulse. Nano Letters, 2017, 17, 5817-5822.	4.5	29
20	Highly compressible, binderless and ultrathick holey graphene-based electrode architectures. Nano Energy, 2017, 31, 386-392.	8.2	39
21	Graphene Oxideâ€Based Electrode Inks for 3Dâ€Printed Lithiumâ€ion Batteries. Advanced Materials, 2016, 28, 2587-2594.	11.1	590
22	Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. Journal of the American Chemical Society, 2016, 138, 12258-12262.	6.6	548
23	Dry-Processed, Binder-Free Holey Graphene Electrodes for Supercapacitors with Ultrahigh Areal Loadings. ACS Applied Materials & Interfaces, 2016, 8, 29478-29485.	4.0	76
24	Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chemical Society Reviews, 2016, 45, 6742-6765.	18.7	363
25	Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock. Nano Letters, 2016, 16, 5553-5558.	4.5	67
26	Rapid Dissolving-Debonding Strategy for Optically Transparent Paper Production. Scientific Reports, 2016, 5, 17703.	1.6	6
27	Atomic Force Microscopy Studies on Molybdenum Disulfide Flakes as Sodium-Ion Anodes. Nano Letters, 2015, 15, 1018-1024.	4.5	113
28	Hybridizing wood cellulose and graphene oxide toward high-performance fibers. NPG Asia Materials, 2015, 7, e150-e150.	3.8	95
29	Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy, 2015, 13, 346-354.	8.2	270
30	Transient Rechargeable Batteries Triggered by Cascade Reactions. Nano Letters, 2015, 15, 4664-4671.	4.5	77
31	Coherent Plasmon-Exciton Coupling in Silver Platelet-J-aggregate Nanocomposites. Nano Letters, 2015, 15, 2588-2593.	4.5	98
32	Organic electrode for non-aqueous potassium-ion batteries. Nano Energy, 2015, 18, 205-211.	8.2	397
33	Free-Standing Na _{2/3} Fe _{1/2} Mn _{1/2} O ₂ @Graphene Film for a Sodium-Ion Battery Cathode. ACS Applied Materials & Interfaces, 2014, 6, 4242-4247.	4.0	88
34	Two dimensional silicon nanowalls for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 6051-6057.	5.2	70
35	Controlling the morphology of indium tin oxide using PEG-assisted hydrothermal synthesis. Materials Letters, 2014, 117, 108-111.	1.3	10