Jon S Odorico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7705994/publications.pdf

Version: 2024-02-01

96 papers

4,471 citations

196777
29
h-index

65 g-index

98 all docs 98 docs citations 98 times ranked 4490 citing authors

#	Article	IF	CITATIONS
1	Letermovir conversion after valganciclovir treatment in cytomegalovirus highâ€risk abdominal solid organ transplant recipients may promote development of cytomegalovirusâ€specific cell mediated immunity. Transplant Infectious Disease, 2022, 24, e13766.	0.7	12
2	Utility of Protocol Pancreas Biopsies for De Novo Donor-specific Antibodies. Transplantation Direct, 2022, 8, e1287.	0.8	2
3	The Presence of Donor-specific Antibodies Around the Time of Pancreas Graft Biopsy With Rejection Is Associated With an Increased Risk of Graft Failure. Transplantation, 2022, 106, e289-e296.	0.5	3
4	A human pancreatic ECM hydrogel optimized for 3-D modeling of the islet microenvironment. Scientific Reports, 2022, 12, 7188.	1.6	21
5	Pancreas Transplantation for Type 2 Diabetes: A Systematic Review, Critical Gaps in the Literature, and a Path Forward. Transplantation, 2022, 106, 1916-1934.	0.5	5
6	Post-pancreatic transplant enteric leaks: The role of the salvage operation. American Journal of Transplantation, 2022, 22, 2052-2063.	2.6	3
7	Cytomegalovirus antiviral stewardship in solid organ transplant recipients: A new gold standard. Transplant Infectious Disease, 2022, 24, .	0.7	16
8	The demise of islet allotransplantation in the United States: A call for an urgent regulatory update. American Journal of Transplantation, 2021, 21, 1365-1375.	2.6	33
9	Single center results of simultaneous pancreas-kidney transplantation in patients with type 2 diabetes. American Journal of Transplantation, 2021, 21, 2810-2823.	2.6	17
10	Proteome-wide and matrisome-specific alterations during human pancreas development and maturation. Nature Communications, 2021, 12, 1020.	5.8	24
11	Pancreas transplant versus islet transplant versus insulin pump therapy: in which patients and when?. Current Opinion in Organ Transplantation, 2021, 26, 176-183.	0.8	4
12	Bimonthly viral monitoring for lateâ€onset cytomegalovirus infectionâ€"Balancing efficacy with patient palatability; A reply to Melgarejo et al. Clinical Transplantation, 2021, 35, e14348.	0.8	2
13	Geographic Distribution of Cytomegalovirus Serology in Kidney and Pancreas Transplant Recipients in the United States. Transplantation Direct, 2021, 7, e704.	0.8	6
14	Valganciclovir prophylaxis extension from 3 to 6 months in highâ€risk pancreasâ€transplant recipients does not impact incidence of cytomegalovirus infection at 12 months. Clinical Transplantation, 2021, 35, e14379.	0.8	4
15	Expanding access to pancreas transplantation for type 2 diabetes mellitus. Current Opinion in Organ Transplantation, 2021, 26, 390-396.	0.8	6
16	Arguments against the Requirement of a Biological License Application for Human Pancreatic Islets: The Position Statement of the Islets for US Collaborative Presented during the FDA Advisory Committee Meeting. Journal of Clinical Medicine, 2021, 10, 2878.	1.0	3
17	First World Consensus Conference on pancreas transplantation: Part II – recommendations. American Journal of Transplantation, 2021, 21, 17-59.	2.6	43
18	The addition of adjunctive letermovir to valganciclovir for refractory cytomegalovirus viremia in kidney transplant recipients. Transplant Infectious Disease, 2021, 23, e13693.	0.7	13

#	Article	IF	CITATIONS
19	A pilot study of an intensified ganciclovir dosing strategy for treatment of cytomegalovirus disease in kidney and/or pancreas transplant recipients. Clinical Transplantation, 2021, 35, e14427.	0.8	3
20	Analysis of pancreatic extracellular matrix protein post-translational modifications <i>via</i> electrostatic repulsion-hydrophilic interaction chromatography coupled with mass spectrometry. Molecular Omics, 2021, 17, 652-664.	1.4	7
21	Association of Human Leukocyte Antigen Mismatches Between Donorâ€recipient And Donorâ€donor in Pancreas after Kidney Transplant Recipients. Transplant International, 2021, , .	0.8	3
22	306.6: Importing Pancreata for Transplantation: An 18-year Single Center Experience. Transplantation, 2021, 105, S21-S21.	0.5	0
23	406.5: Importing DCD Pancreatic Grafts: Is it Sound Practice?. Transplantation, 2021, 105, S33-S33.	0.5	0
24	P.148: Post-Pancreatic Transplant Enteric Leaks: The Role of the Salvage Operation. Transplantation, 2021, 105, S61-S61.	0.5	0
25	P.131: Persistent Low Blood Pressure After Simultaneous Pancreas and Kidney Transplant Is not Associated With an Increased Risk of Allograft Loss. Transplantation, 2021, 105, S51-S51.	0.5	0
26	406.1: An Initial Analysis of the Baseline Levels of dd-cfDNA After Pancreas Transplantation: A Prospective Study From High-volume Centers in the United States. Transplantation, 2021, 105, S31-S31.	0.5	0
27	406.4: Induction in Pancreas Transplantation: T-cell Depletion vs. IL-2 Receptor Blockade. Transplantation, 2021, 105, S32-S32.	0.5	0
28	208.1: The Presence of Donor-specific Antibodies Around the Time of Pancreas Graft Biopsy With Rejection Is Associated With an Increased Risk of Graft Failure. Transplantation, 2021, 105, S8-S8.	0.5	0
29	Hypertension, but not body mass index, is predictive of increased pancreatic lipid content and islet dysfunction. American Journal of Transplantation, 2020, 20, 1105-1115.	2.6	7
30	Geographic Disparities in Access to Simultaneous Pancreas and Kidney Transplant in the Pre- and Post-Pancreas Allocation System Eras. Transplantation, 2020, 104, 623-631.	0.5	6
31	More Than 25 Years of Pancreas Graft Survival After Simultaneous Pancreas and Kidney Transplantation: Experience From the World's Largest Series of Long-term Survivors. Transplantation, 2020, 104, 1287-1293.	0.5	12
32	Alloimmunity in pancreas transplantation. Current Opinion in Organ Transplantation, 2020, 25, 322-328.	0.8	9
33	Pancreas transplants from small donors: are the outcomes acceptable? A retrospective study. Transplant International, 2020, 33, 1437-1446.	0.8	3
34	Outcomes of simultaneous pancreas and kidney transplants based on preemptive transplant compared to those who were on dialysis before transplant – a retrospective study. Transplant International, 2020, 33, 1106-1115.	0.8	8
35	Incidence and Outcomes of Significant Weight Changes After Pancreas Transplant Alone. Transplantation Direct, 2020, 6, e539.	0.8	3
36	Polyomavirus and cytomegalovirus infections are risk factors for grafts loss in simultaneous pancreas and kidney transplant. Transplant Infectious Disease, 2020, 22, e13272.	0.7	6

#	Article	IF	Citations
37	Challenges of calcineurin inhibitor withdrawal following combined pancreas and kidney transplantation: Results of a prospective, randomized clinical trial. American Journal of Transplantation, 2020, 20, 1668-1678.	2.6	15
38	Delayed kidney graft function in simultaneous pancreas-kidney transplant recipients is associated with early pancreas allograft failure. American Journal of Transplantation, 2020, 20, 2822-2831.	2.6	8
39	Outcomes after simultaneous kidneyâ€pancreas versus pancreas after kidney transplantation in the current era. Clinical Transplantation, 2019, 33, e13732.	0.8	17
40	In Depth Quantification of Extracellular Matrix Proteins from Human Pancreas. Journal of Proteome Research, 2019, 18, 3156-3165.	1.8	26
41	Isolated pancreas transplantation: Is rank list position related to outcomes of imported grafts?. American Journal of Transplantation, 2019, 19, 3124-3130.	2.6	1
42	Enteric conversion after bladderâ€drained pancreas transplantation is not associated with worse allograft survival. American Journal of Transplantation, 2019, 19, 2543-2549.	2.6	7
43	Harald C. Ott: Clinician-scientist, Cardiothoracic Surgeon, Massachusetts General Hospital, Harvard Medical School. Transplantation, 2019, 103, 862-863.	0.5	24
44	Pancreas Retransplant After Pancreas Graft Failure in Simultaneous Pancreas-kidney Transplants Is Associated With Better Kidney Graft Survival. Transplantation Direct, 2019, 5, e473.	0.8	7
45	How Should Pancreas Transplant Rejection Be Treated?. Transplantation, 2019, 103, 1928-1934.	0.5	17
46	Where Have All the Pancreas Transplants Gone and What Needs to Change?. Current Transplantation Reports, 2019, 6, 285-293.	0.9	3
47	C-peptide levels do not correlate with pancreas allograft failure: Multicenter retrospective analysis and discussion of the new OPT definition of pancreas allograft failure. American Journal of Transplantation, 2019, 19, 1178-1186.	2.6	9
48	The survival advantage of pancreas after kidney transplant. American Journal of Transplantation, 2019, 19, 823-830.	2.6	57
49	Yes, we do need to demonstrate the survival advantage of pancreas after kidney transplantation. American Journal of Transplantation, 2019, 19, 1243-1244.	2.6	3
50	Defining outcomes for beta cell replacement therapy: a work in progress. Diabetologia, 2018, 61, 1273-1276.	2.9	13
51	Large-Scale Differentiation and Site Specific Discrimination of Hydroxyproline Isomers by Electron Transfer/Higher-Energy Collision Dissociation (EThcD) Mass Spectrometry. Analytical Chemistry, 2018, 90, 5857-5864.	3.2	12
52	Defining outcomes for \hat{l}^2 -cell replacement therapy in the treatment of diabetes: a consensus report on the Igls criteria from the IPITA/EPITA opinion leaders workshop. Transplant International, 2018, 31, 343-352.	0.8	80
53	Defining Outcomes for \hat{l}^2 -cell Replacement Therapy in the Treatment of Diabetes. Transplantation, 2018, 102, 1479-1486.	0.5	7 5
54	Concurrent biopsies of both grafts in recipients of simultaneous pancreas and kidney demonstrate high rates of discordance for rejection as well as discordance in type of rejection - a retrospective study. Transplant International, 2018, 31, 32-37.	0.8	27

#	Article	IF	CITATIONS
55	Prevalence and outcomes of cystic lesions of the transplant pancreas: The University of Wisconsin Experience. American Journal of Transplantation, 2018, 18, 467-477.	2.6	10
56	The road less traveled: how to grow a pancreas transplant program. Current Opinion in Organ Transplantation, 2018, 23, 440-447.	0.8	6
57	Pancreas transplantation in type 2 diabetes: expanding the criteria. Current Opinion in Organ Transplantation, 2018, 23, 454-460.	0.8	33
58	Rebuilding a better home for transplanted islets. Organogenesis, 2018, 14, 163-168.	0.4	18
59	Impact of intensive dosing of mycophenolate on pancreas allograft survival. Clinical Transplantation, 2018, 32, e13293.	0.8	2
60	Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. Transplantation, 2018, 102, 1223-1229.	0.5	72
61	Ipsilateral versus contralateral placement of the pancreas allograft in pancreas after kidney transplant recipients. Clinical Transplantation, 2018, 32, e13337.	0.8	6
62	Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Scientific Reports, 2018, 8, 10452.	1.6	192
63	The Nexus of Stem Cell-Derived Beta-Cells and Genome Engineering. Review of Diabetic Studies, 2017, 14, 39-50.	0.5	9
64	PTF1a Activity in Enriched Posterior Foregut Endoderm, but Not Definitive Endoderm, Leads to Enhanced Pancreatic Differentiation in an <i>In Vitro</i> In VitroInternational, 2016, 2016, 1-15.	1.2	2
65	Virtual HLA Crossmatching as a Means to Safely Expedite Transplantation of Imported Pancreata. Transplantation, 2016, 100, 1103-1110.	0.5	24
66	Pancreas transplantation in older patients is safe, but patient selection is paramount. Transplant International, 2016, 29, 810-818.	0.8	40
67	Pancreas transplantation. Current Opinion in Organ Transplantation, 2016, 21, 386-392.	0.8	65
68	Clinically Significant Drug Interaction Between Clotrimazole and Tacrolimus in Pancreas Transplant Recipients and Associated Risk of Allograft Rejection. Pharmacotherapy, 2016, 36, 335-341.	1.2	15
69	Pancreas Transplantation in the Modern Era. Gastroenterology Clinics of North America, 2016, 45, 145-166.	1.0	43
70	Simultaneous pancreas and kidney transplantation. Current Opinion in Organ Transplantation, 2015, 20, 94-102.	0.8	97
71	Man With Nausea and Fever. JAMA Surgery, 2014, 149, 487.	2.2	0
72	Ectopic Ptf1a Expression in Murine ESCs Potentiates Endocrine Differentiation and Models Pancreas Development In Vitro. Stem Cells, 2014, 32, 1195-1207.	1.4	12

#	Article	IF	CITATIONS
7 3	Improvement in Outcomes of Clinical Islet Transplantation: 1999–2010. Diabetes Care, 2012, 35, 1436-1445.	4.3	665
74	Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells. Mechanisms of Development, 2011, 128, 412-427.	1.7	145
7 5	Elimination of tumorigenic stem cells from differentiated progeny and selection of definitive endoderm reveals a Pdx1+ foregut endoderm stem cell lineage. Stem Cell Research, 2011, 6, 143-157.	0.3	20
76	Potential Pathways to Restore \hat{l}^2 -Cell Mass: Pluripotent Stem Cells, Reprogramming, and Endogenous Regeneration. Current Diabetes Reports, 2011, 11, 392-401.	1.7	17
77	Reduced serum concentration is permissive for increased in vitro endocrine differentiation from murine embryonic stem cells. Differentiation, 2009, 78, 24-34.	1.0	6
78	Alemtuzumab Induction and Antibody-Mediated Kidney Rejection After Simultaneous Pancreas-Kidney Transplantation. Transplantation, 2009, 87, 125-132.	0.5	46
79	One Thousand Simultaneous Pancreas-Kidney Transplants at a Single Center With 22-Year Follow-Up. Annals of Surgery, 2009, 250, 618-630.	2.1	261
80	Alternative sources of pluripotency: science, ethics, and stem cells. Transplantation Reviews, 2008, 22, 215-222.	1.2	47
81	C4d-Positive Interacinar Capillaries Correlates With Donor-Specific Antibody-Mediated Rejection in Pancreas Allografts. Transplantation, 2008, 86, 1849-1856.	0.5	43
82	Making new \hat{l}^2 cells and pancreatic stem cells. Current Opinion in Organ Transplantation, 2007, 12, 37-39.	0.8	0
83	Generation and Characterization of Novel Tetracycline-Inducible Pancreatic Transcription Factor-Expressing Murine Embryonic Stem Cell Lines. Stem Cells and Development, 2006, 15, 953-962.	1.1	15
84	Differentiation of Embryonic Stem Cells Conditionally Expressing Neurogenin 3. Stem Cells, 2006, 24, 2529-2537.	1.4	52
85	Endoderm and Pancreatic Islet Lineage Differentiation from Human Embryonic Stem Cells. Cloning and Stem Cells, 2006, 8, 96-107.	2.6	54
86	Intrathymic injection of anti-Fas monoclonal antibody prolongs murine non-vascularized cardiac allograft survival. Transplant International, 2004, 17, 301-309.	0.8	3
87	Superior Long-Term Results of Simultaneous Pancreas-Kidney Transplantation from Pediatric Donors. American Journal of Transplantation, 2004, 4, 2093-2101.	2.6	49
88	Pancreatic Precursors and Differentiated Islet Cell Types From Murine Embryonic Stem Cells: An In Vitro Model to Study Islet Differentiation. Diabetes, 2003, 52, 2016-2024.	0.3	128
89	Technical and Immunosuppressive Advances in Transplantation forInsulin-Dependent Diabetes Mellitus. World Journal of Surgery, 2002, 26, 194-211.	0.8	51
90	Multilineage Differentiation from Human Embryonic Stem Cell Lines. Stem Cells, 2001, 19, 193-204.	1.4	876

#	Article	IF	CITATIONS
91	Simultaneous Pancreas-Kidney and Pancreas Transplantation. Journal of the American Society of Nephrology: JASN, 2001, 12, 2517-2527.	3.0	54
92	Simultaneous Pancreas-Kidney Transplantation and Living Related Donor Renal Transplantation in Patients With Diabetes: Is There a Difference in Survival?. Annals of Surgery, 2000, 231, 417-423.	2.1	122
93	Liver transplantation as definitive therapy for complications after arterial embolization for hepatic manifestations of hereditary hemorrhagic telangiectasia. Liver Transplantation, 1998, 4, 483-490.	1.9	39
94	Experience With 500 Simultaneous Pancreas-Kidney Transplants. Annals of Surgery, 1998, 228, 284-296.	2.1	275
95	POSTTRANSPLANT INFECTION IN ENTERIC VERSUS BLADDER-DRAINED SIMULTANEOUS PANCREAS-KIDNEY TRANSPLANT RECIPIENTS1. Transplantation, 1998, 66, 1746-1750.	0.5	96
96	A STUDY COMPARING MYCOPHENOLATE MOFETIL TO AZATHIOPRINE IN SIMULTANEOUS PANCREAS-KIDNEY TRANSPLANTATION1. Transplantation, 1998, 66, 1751-1759.	0.5	72