
Dirk Enke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/770596/publications.pdf Version: 2024-02-01

DIDE ENKE

#	Article	IF	CITATIONS
1	Ash transformation mechanism during combustion of rice husk and rice straw. Fuel, 2022, 307, 121768.	6.4	41
2	New fuel indexes to predict ash behavior for biogenic silica production. Fuel, 2022, 310, 122345.	6.4	6
3	On the Comparative Analysis of Different Phase Coexistences in Mesoporous Materials. Materials, 2022, 15, 2350.	2.9	3
4	Valorization of Residues from Energy Conversion of Biomass for Advanced and Sustainable Material Applications. Sustainability, 2022, 14, 4939.	3.2	2
5	Impact of Geometrical Disorder on Phase Equilibria of Fluids and Solids Confined in Mesoporous Materials. Langmuir, 2021, 37, 3521-3537.	3.5	12
6	Non-aqueous cross hydrolysis: an epoxide-free sol-gel route toward highly porous alumina monoliths. Journal of Sol-Gel Science and Technology, 2021, 99, 457-460.	2.4	0
7	A novel approach for advanced thermoporometry characterization of mesoporous solids: Transition kernels and the serially connected pore model. Microporous and Mesoporous Materials, 2020, 309, 110534.	4.4	13
8	Behavior of Metal Impurities on Surface and Bulk of Biogenic Silica from Rice Husk Combustion and the Impact on Ash-Melting Tendency. ACS Sustainable Chemistry and Engineering, 2020, 8, 10369-10379.	6.7	22
9	Towards Macroporous α-Al2O3—Routes, Possibilities and Limitations. Materials, 2020, 13, 1787.	2.9	9
10	Reticulated Alumina Replica Foams with Additional Subâ€Micrometer Strut Porosity. Advanced Engineering Materials, 2019, 21, 1900791.	3.5	8
11	Comparative Gas Sorption and Cryoporometry Study of Mesoporous Glass Structure: Application of the Serially Connected Pore Model. Frontiers in Chemistry, 2019, 7, 230.	3.6	11
12	Generation of High Quality Biogenic Silica by Combustion of Rice Husk and Rice Straw Combined with Pre- and Post-Treatment Strategies—A Review. Applied Sciences (Switzerland), 2019, 9, 1083.	2.5	61
13	Rice Husk Derived Porous Silica as Support for Pd and CeO2 for Low Temperature Catalytic Methane Combustion. Catalysts, 2019, 9, 26.	3.5	30
14	Sol-gel synthesis of α-Al2O3 with enhanced porosity via dicarboxylic acid templating. Scientific Reports, 2019, 9, 19982.	3.3	13
15	Nano-casted N-Doped Carbon Created From a Task-Specific Protic Salt and Controlled Porous Glass. Frontiers in Chemistry, 2019, 7, 767.	3.6	1
16	Confinement-induced polymorphism in acetylsalicylic acid–nanoporous glass composites. Journal of Materials Science, 2019, 54, 404-413.	3.7	1
17	Investigation of the formation process of highly porous α-Al2O3 via citric acid-assisted sol-gel synthesis. Journal of the European Ceramic Society, 2019, 39, 2493-2502.	5.7	16
18	Capillary Nanostamping with Spongy Mesoporous Silica Stamps. Advanced Functional Materials, 2018, 28, 1800700.	14.9	15

Dirk Enke

#	Article	IF	CITATIONS
19	Oneâ€Shot Measurement of Effectiveness Factors of Chemical Conversion in Porous Catalysts. ChemCatChem, 2018, 10, 5602-5609.	3.7	17
20	Synthese von porösen Voll―und Coreâ€5hellâ€Glaskugeln zur Trennung von chiralen Anäthetika. Chemie-Ingenieur-Technik, 2016, 88, 1761-1769.	0.8	5
21	Microimaging of Transient Concentration Profiles of Reactant and Product Molecules during Catalytic Conversion in Nanoporous Materials. Angewandte Chemie - International Edition, 2015, 54, 5060-5064.	13.8	62
22	Improving mass-transfer in controlled pore glasses as supports for the platinum-catalyzed aromatics hydrogenation. Catalysis Science and Technology, 2015, 5, 3137-3146.	4.1	15
23	Concentration-Dependent Self-Diffusion of Water in Aqueous Solutions of Lithium Chloride Confined to Porous Glasses. Applied Magnetic Resonance, 2013, 44, 827-836.	1.2	7
24	Characterization of Biogenic Silica Generated by Thermo Chemical Treatment of Rice Husk. Particulate Science and Technology, 2013, 31, 524-532.	2.1	40
25	Stabilization of the amorphous state of pharmaceuticals in nanopores. Journal of Materials Chemistry, 2008, 18, 2537.	6.7	125
26	Manipulating the Crystalline State of Pharmaceuticals by Nanoconfinement. Nano Letters, 2007, 7, 1381-1385.	9.1	156
27	Porous glasses in the 21st century––a short review. Microporous and Mesoporous Materials, 2003, 60, 19-30.	4.4	237