
Tatiana Betakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7705686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pandemics of the 21st Century: The Risk Factor for Obese People. Viruses, 2022, 14, 25.	3.3	16
2	Influenza A virus lacking the effector and C terminal domains of NS1 protein induces cytokines associated with high pathogenicity in mice. Acta Virologica, 2020, 64, 78-87.	0.8	6
3	T cells and their function in the immune response to viruses. Acta Virologica, 2020, 64, 131-143.	0.8	21
4	Chemokine-binding proteins encoded by herpesviruses. Acta Virologica, 2020, 64, 233-244.	0.8	2
5	Comparison of cytokine profiles induced by nonlethal and lethal doses of influenza A virus in mice. Experimental and Therapeutic Medicine, 2019, 18, 4397-4405.	1.8	10
6	Conserved methionine 165 of matrix protein contributes to the nuclear import and is essential for influenza A virus replication. Virology Journal, 2018, 15, 187.	3.4	6
7	Comparison of transcriptional profiles of interferons, CXCL10 and RIG-1 in influenza infected A549 cells stimulated with exogenous interferons. Acta Virologica, 2017, 61, 183-190.	0.8	3
8	Cytokines Induced During Influenza Virus Infection. Current Pharmaceutical Design, 2017, 23, 2616-2622.	1.9	97
9	Transforming Activity of Murine Herpesvirus 68 Putative Growth Factor Is Related to the Ability to Change Cytoskeletal Structure. Intervirology, 2016, 59, 137-142.	2.8	1
10	Nest ecology of blood parasites in the European roller and its ectoparasitic carnid fly. Experimental Parasitology, 2016, 165, 71-80.	1.2	9
11	Protective efficacy of IFN-ï‰ AND IFN-λs against influenza viruses in induced A549 cells. Acta Virologica, 2015, 59, 413-417.	0.8	8
12	Murine Gammaherpesvirus (MHV-68) Transforms Cultured Cells in vitro. Intervirology, 2015, 58, 69-72.	2.8	7
13	Antiviral Effect of Interferon Lambda Against Lymphocytic Choriomeningitis Virus. Journal of Interferon and Cytokine Research, 2015, 35, 540-553.	1.2	10
14	Synergic and antagonistic effect of small hairpin RNAs targeting the NS gene of the influenza A virus in cells and mice. Virus Research, 2015, 195, 100-111.	2.2	7
15	Induction of interferon lambda in influenza aÂvirus infected cells treated with shRNAs against M1 transcript. Acta Virologica, 2015, 59, 148-155.	0.8	1
16	Interferons lambda, new cytokines with antiviral activity. Acta Virologica, 2013, 57, 171-179.	0.8	40
17	Overview of measles and mumps vaccine: origin, present, and future of vaccine production. Acta Virologica, 2013, 57, 91-96.	0.8	28
18	Role and application of RNA interference in replication of influenza viruses. Acta Virologica, 2013, 57, 97-104	0.8	19

Τατιανά Βετακούα

#	Article	IF	CITATIONS
19	Prevalence of avian influenza viruses, Mycobacterium avium, and Mycobacterium avium, subsp. paratuberculosis in marsh-dwelling passerines in Slovakia, 2008. Biologia (Poland), 2011, 66, 282-287.	1.5	5
20	Associations Between Coinfection Prevalence of Borrelia lusitaniae, Anaplasma sp., and Rickettsia sp. in Hard Ticks Feeding on Reptile Hosts. Microbial Ecology, 2011, 61, 245-253.	2.8	31
21	Molecular Detection of Murine Herpesvirus 68 in Ticks Feeding on Free-living Reptiles. Microbial Ecology, 2011, 62, 862-7.	2.8	16
22	Influenza A virus replication is inhibited in IFN-λ2 and IFN-λ3 transfected or stimulated cells. Antiviral Research, 2010, 88, 329-333.	4.1	18
23	Human immunodeficiency virus 1 Vpu protein does not affect the conversion of Influenza A virus hemagglutinin to its low-pH conformation in an acidic trans-Golgi compartment. Acta Virologica, 2010, 54, 197-203.	0.8	1
24	Determination of hemagglutinin and neuraminidase subtypes of avian influenza A viruses in urban pigeons by a new nested RT-PCR. Acta Virologica, 2009, 53, 213-216.	0.8	12
25	Stability and function of the influenza A virus M2 ion channel protein is determined by both extracellular and cytoplasmic domains. Archives of Virology, 2009, 154, 147-151.	2.1	6
26	Comparison of the activities of BM2 protein and its H19 and W23 mutants of influenza B virus with activities of M2 protein and its H37 and W41 mutants of influenza A virus. Archives of Virology, 2009, 154, 1619-1624.	2.1	7
27	Using nested RT-PCR analyses to determine the prevalence of avian influenza viruses in passerines in western Slovakia, during summer 2007. Scandinavian Journal of Infectious Diseases, 2008, 40, 954-957.	1.5	22
28	Prevalence of avian influenza viruses, <i>Borrelia garinii</i> , <i>Mycobacterium avium</i> , and <i>Mycobacterium avium</i> subsp. <i>paratuberculosis</i> in waterfowl and terrestrial birds in Slovakia, 2006. Avian Pathology, 2008, 37, 537-543.	2.0	16
29	M2 Protein-A Proton Channel of Influenza A Virus. Current Pharmaceutical Design, 2007, 13, 3231-3235.	1.9	39
30	Evidence that the CM2 protein of influenza C virus can modify the pH of the exocytic pathway of transfected cells. Journal of General Virology, 2007, 88, 2291-2296.	2.9	20
31	Reconstitution of carbonic anhydrase activity of the cell-surface-binding protein of vaccinia virus. Biochemical Journal, 2007, 407, 61-67.	3.7	10
32	Detection ofBorrelia burgdorferi sensu lato andChlamydophila psittaci in throat and cloacal swabs from birds migrating through Slovakia. Folia Microbiologica, 2006, 51, 653-658.	2.3	10
33	Influence of residue 44 on the activity of the M2 proton channel of influenza A virus. Journal of General Virology, 2005, 86, 181-184.	2.9	40
34	The tryptophan 41 is not essential for the function of the M2 proton channel of influenza A virus. International Congress Series, 2004, 1263, 777-780.	0.2	1
35	Differences in conductance of M2 proton channels of two influenza viruses at low and high pH. Journal of Physiology, 2003, 546, 427-438.	2.9	73
36	Disulfide Bonds and Membrane Topology of the Vaccinia Virus A17L Envelope Protein. Journal of Virology, 2000, 74, 2438-2442.	3.4	21

#	Article	IF	CITATIONS
37	The Vaccinia Virus A14.5L Gene Encodes a Hydrophobic 53-Amino-Acid Virion Membrane Protein That Enhances Virulence in Mice and Is Conserved among Vertebrate Poxviruses. Journal of Virology, 2000, 74, 4085-4092.	3.4	44
38	The strong positive correlation between effective affinity and infectivity neutralization of highly cross-reactive monoclonal antibody IIB4, which recognizes antigenic site B on influenza A virus haemagglutinin. Microbiology (United Kingdom), 2000, 81, 1727-1735.	1.8	19
39	Membrane Topology of the Vaccinia Virus A17L Envelope Protein. Virology, 1999, 261, 347-356.	2.4	25
40	Regulation of Vaccinia Virus Morphogenesis: Phosphorylation of the A14L and A17L Membrane Proteins and C-Terminal Truncation of the A17L Protein Are Dependent on the F10L Kinase. Journal of Virology, 1999, 73, 3534-3543.	3.4	73
41	The NB protein is an integral component of the membrane of influenza B virus. Journal of General Virology, 1996, 77, 2689-2694.	2.9	66
42	Preparation of monoclonal antibodies for the diagnosis of influenza A infection using different immunization protocols. Journal of Immunological Methods, 1995, 180, 107-116.	1.4	41
43	Monoclonal antibodies demonstrate accessible HA2 epitopes in minor subpopulation of native influenza virus haemagglutinin molecules. Archives of Virology, 1993, 130, 45-56.	2.1	23