Yong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7705394/publications.pdf

Version: 2024-02-01

		840776	940533
56	430	11	16
papers	citations	h-index	g-index
56	56	56	201
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Creep behaviour of an Al–Si–Al2O3 composite based on phase evolution at 1300oC. Ceramics International, 2022, 48, 2337-2344.	4.8	6
2	Inâ€situ synthesis of 15Râ€Sialon from Alâ€Si ₃ N ₄ â€Al ₂ O ₃ composite at 1500°C via liquidâ€phase sintering. Journal of the American Ceramic Society, 2022, 105, 2268-2276.	3.8	1
3	A novel dense Al ₂ O ₃ -Ti ₂ O ₃ slag synthesized while ferro-titanium alloy making. Journal of Asian Ceramic Societies, 2022, 10, 150-157.	2.3	O
4	Novel process for synthesizing fused mullite from titanium-rich medium/low grade or waste bauxite. Ceramics International, 2022, 48, 8228-8234.	4.8	7
5	Performance of silica bricks with ferrosilicon nitride as the mineralizer. Ceramics International, 2022, 48, 26791-26799.	4.8	1
6	Phase evolution of a novel silicon-alumina-fused mullite-containing Ti2O3 refractory at 1300°C in N2. Ceramics International, 2022, 48, 31686-31694.	4.8	2
7	Cost-effective manufacture and synthesis mechanism of ferrosilicon nitride porous ceramic with interlocking structure. Ceramics International, 2021, 47, 5265-5272.	4.8	5
8	Effect of TiO2 on the formation of novel non-oxide phases in Al–MgO–Al2O3 composite at high temperatures in flowing N2. Materials Chemistry and Physics, 2021, 258, 123963.	4.0	1
9	Thermodynamic analysis of Al O (g) and phase and micro-structure evolution of the resin bonded Al–Al2O3–ZrO2 refractories under air embedded in coke breeze. Journal of Alloys and Compounds, 2021, 855, 157216.	5.5	2
10	Effect of Si3N4 mesophase on the formation of Al2OC-AlNss in resin-bonded Al–Al2O3 composites. Ceramics International, 2021, 47, 25491-25496.	4.8	3
11	In situ formation mechanism of spinel-like Al5O6N and plate-like Al7O3N5 in the two-step sintered Al–Al2O3 composites. Materials Chemistry and Physics, 2021, 271, 124951.	4.0	3
12	Phase composition, microstructure, and properties of Al4O4C–(Al2OC)1-(AlN) –Zr2Al3C4–Al2O3 refractories prepared at high temperatures in nitrogen. Ceramics International, 2021, 47, 30298-30309.	4.8	2
13	Formation mechanism of Ti(C, N) solid solution in Al-brown fused alumina refractory at 1973 K in flowing N2. Ceramics International, 2020, 46, 2654-2660.	4.8	10
14	Formation mechanism and controllable preparation of Ti(C,N) in Al–TiO2–Al2O3 composite at 1673â€⁻K in flowing N2. Materials Chemistry and Physics, 2020, 239, 122128.	4.0	4
15	Controllable synthesis of Al2OC-AlN solid solution by two-step sintering in resin-bonded Al-Al2O3 composites. Materials Chemistry and Physics, 2020, 241, 122410.	4.0	7
16	Reaction mechanisms between slag and Ti(C,N)–MgAl2O3–Al2O3 refractories at 1600 °C. Ceramics International, 2020, 46, 27774-27782.	4.8	7
17	Synthesis of (Al ₂ OC) _x (AlN) _{1-x} whiskers via Al ₂ O(g) transient phase in Al-Al ₂ O ₃ composite at 1000–1300°C in flowing N ₂ . Journal of Asian Ceramic Societies, 2020, 8, 624-633.	2.3	3
18	Formation mechanism of whiskers in Al–MgAl2O4–MgO refractories at 1400°C under N2 atmosphere. Ceramics International, 2020, 46, 20724-20731.	4.8	7

#	Article	IF	Citations
19	Formation mechanism of γ-AlON and β-SiC reinforcements in a phenolic resin-bonded Al–Si–Al2O3 composite at 1700°C in flowing N2. Journal of Materials Science, 2020, 55, 5772-5781.	3.7	4
20	Investigation of the oxidation mechanism of an Al–Si–Al2O3 composite at 1100°C and 1550°C. Cerami International, 2020, 46, 13813-13820.	^{CS} 4.8	5
21	Study on the synthesis and formation mechanism of Al2OC-AlN solid solution in Al–Al2O3 composite material in air at 1500°C. Solid State Sciences, 2020, 100, 106112.	3.2	6
22	Oxidation mechanism of Al-TiO2-MgO-Al2O3 composites after the treatment at 1500°C in N2-blowing. Materials Chemistry and Physics, 2020, 248, 122937.	4.0	1
23	Formation of dense non-oxide layer in Al–TiO2–MgO–Al2O3 refractories at 1873†K in flowing N2. Ceramics International, 2019, 45, 19297-19306.	4.8	5
24	Reaction bonding alumina with AlN–SiC solid solution by nitridation of matrix containing Al–Si powders. Journal of Materials Science, 2019, 54, 14654-14665.	3.7	10
25	Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al2O3-TiO2 composites at high temperatures under flowing N2. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 1177-1185.	4.9	1
26	Study on formation mechanism and morphology evolution of Iron-exsolution mullite. Materials Letters, 2019, 246, 9-12.	2.6	4
27	Wear mechanism of a novel Al Si MgAl2O4Al2O3 composite used in the low vessel of an RH secondary refining furnace. Ceramics International, 2019, 45, 11275-11280.	4.8	6
28	Formation of (Al ₂ OC) _{1â^'} <i>_x</i> (AlN) <i>_x</i> solid solution starting from Alâ€"Siâ€"Al ₂ O ₃ powder matrix at 1300°C in flowing nitrogen. Journal of the American Ceramic Society, 2019, 102, 6349-6356.	3.8	11
29	Kinetic study on the anisotropic grain growth of elongated iron-containing mullite. Ceramics International, 2019, 45, 12934-12941.	4.8	9
30	Preparation and ladle slag resistance mechanism of MgAlON bonded Al2O3 -MgAlON-Zr2Al3C4-(Al2CO)1-(AlN) refractories. Ceramics International, 2019, 45, 346-353.	4.8	10
31	Combined effect of Fe-Si alloys and carbon on Si3N4 stability at elevated temperatures. Ceramics International, 2019, 45, 3290-3296.	4.8	6
32	Study on phase evolution of the resin bonded Al-Al2O3 composites in N2-flowing at high temperature. Journal of Alloys and Compounds, 2019, 784, 1145-1152.	5.5	17
33	Preparation, growth mechanism and slag resistance behavior of ternary Ca 2 Mg 2 Al 28 O 46 (C 2 M 2 A) Tj ETQq	1 _{2.1} 0.784	-314 rgBT /
34	Novel iron-rich mullite solid solution synthesis using fused-silica and \hat{l}_{\pm} -Al2O3 powders. Ceramics International, 2019, 45, 4680-4684.	4.8	12
35	Phase evolution mechanism of nonâ€oxide bonded Al–Al ₂ O ₃ –MgO–ZrO ₂ composites at 1873ÂK in flowing nitrogen. Journal of the American Ceramic Society, 2018, 101, 2162-2169.	3.8	9
36	Formation mechanism of elongated β–Si3N4 crystals in Fe–Si3N4 composite via flash combustion. Ceramics International, 2018, 44, 9395-9400.	4.8	13

#	Article	IF	CITATIONS
37	Silicon nitridation mechanism in reactionâ€bonded Si ₃ N ₄ â€"SiC and Si ₃ N ₄ â€bonded ferrosilicon nitride. Journal of the American Ceramic Society, 2018, 101, 4350-4356.	3.8	17
38	Investigation on a postmortem resin-bonded Al-Si-Al2O3 sliding gate with functional gradient feature. Ceramics International, 2018, 44, 6384-6389.	4.8	13
39	In situ synthesis mechanism of 15R–SiAlON reinforced Al ₂ O ₃ refractories by Fe–Si liquid phase sintering. Journal of the American Ceramic Society, 2018, 101, 1870-1879.	3.8	26
40	Theoretical analysis and synthesis of Al4O4C and Al2CO phase in the resin bonded Al-Al2O3 refractory in N2-flowing. Ceramics International, 2018, 44, 1493-1499.	4.8	27
41	Formation mechanism of dense anti-oxidation layer in Al-Si-MgO composites sintered in air condition. Ceramics International, 2018, 44, 3987-3992.	4.8	5
42	Formation mechanism of Sialon in alumina-ferro-silicon-nitride composite under nitrogen atmosphere at high temperatures. Solid State Sciences, 2018, 86, 19-23.	3.2	4
43	Role of the vapour phases in the formation mechanism of 15R-SiAlON in FexSiy-Si3N4-Al2O3 composites at 1800â€Â°C. Ceramics International, 2018, 44, 23239-23247.	4.8	7
44	Enhanced properties of MgO–Al 2 O 3 composite materials with Al powder addition under 1300°C creep test and its mechanism analysis. Solid State Sciences, 2017, 66, 38-43.	3.2	1
45	Mechanism of active and passive oxidation of reaction-bonded Si3N4-SiC refractories. Ceramics International, 2017, 43, 10720-10725.	4.8	19
46	Effect of Al addition on creep resistance of MgO-Al2O3 composite for sliding plate at 1400 \hat{A}° C. Ceramics International, 2017, 43, 11610-11615.	4.8	9
47	In-situ synthesis of AlON reinforcing phases in resin bonded Al 2 O 3 composite materials. Journal of Alloys and Compounds, 2017, 711, 1-7.	5.5	18
48	Reaction mechanism for in-situ β-SiAlON formation in Fe3Si–Si3N4–Al2O3 composites. International Journal of Minerals, Metallurgy and Materials, 2017, 24, 324-331.	4.9	9
49	In situ reaction mechanism of MgAlON in Al–Al2O3–MgO composites at 1700°C under flowing N2. International Journal of Minerals, Metallurgy and Materials, 2017, 24, 1061-1066.	4.9	11
50	Performance investigation of resin bonded ferro-silicon nitride-corundum refractories after creep at 1300 ${\hat {\sf A}}^{\sf o}{\sf C}$. Ceramics International, 2017, 43, 16424-16429.	4.8	3
51	Controllable preparation and synthetic mechanism of mullite from the bauxite with Fe-rich oxide content. Materials Chemistry and Physics, 2017, 202, 245-250.	4.0	14
52	In-situ synthesis and reaction mechanism of MgAlON in Al2O3-MgO composites produced in flowing nitrogen. Ceramics International, 2017, 43, 14791-14797.	4.8	8
53	One step sintering of homogenized bauxite raw material and kinetic study. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 1231-1238.	4.9	4
54	Fracture behavior and microstructure analysis of Al2O3–MgO–CaO castables for steel-ladle purging plugs. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 1333-1339.	4.9	3

#	Article	IF	CITATIONS
55	New synthetic route to Al4O4C reinforced Al–Al2O3 composite materials. Solid State Sciences, 2015, 46, 33-36.	3.2	24
56	Properties of both Chinese silica brick and silica raw material. Ironmaking and Steelmaking, 0, , 1-11.	2.1	0