
Jonathan Storkey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7705256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Integrated Weed Management framework: A pan-European perspective. European Journal of Agronomy, 2022, 133, 126443.	1.9	49
2	Communicating carabids: Engaging farmers to encourage uptake of integrated pest management. Pest Management Science, 2022, 78, 2477-2491.	1.7	8
3	Long-term evidence for ecological intensification as a pathway to sustainable agriculture. Nature Sustainability, 2022, 5, 770-779.	11.5	48
4	Above―and belowâ€ground assessment of carabid community responses to crop type and tillage. Agricultural and Forest Entomology, 2021, 23, 1-12.	0.7	13
5	Do ecological specialization and functional traits explain the abundance–frequency relationship? Arable weeds as a case study. Journal of Biogeography, 2021, 48, 37-50.	1.4	7
6	Population responses to observed climate variability across multiple organismal groups. Oikos, 2021, 130, 476-487.	1.2	7
7	Agricultural intensification and climate change have increased the threat from weeds. Global Change Biology, 2021, 27, 2416-2425.	4.2	27
8	Functional biogeography of weeds reveals how anthropogenic management blurs trait–climate relationships. Journal of Vegetation Science, 2021, 32, e12999.	1.1	3
9	Defining Integrated Weed Management: A Novel Conceptual Framework for Models. Agronomy, 2021, 11, 747.	1.3	6
10	Weed seedbank diversity and sustainability indicators for simple and more diverse cropping systems. Weed Research, 2021, 61, 164-177.	0.8	11
11	The Mineral Composition of Wild-Type and Cultivated Varieties of Pasture Species. Agronomy, 2020, 10, 1463.	1.3	12
12	An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for Sustainable Development, 2020, 40, 1.	2.2	148
13	Century long fertilization reduces stochasticity controlling grassland microbial community succession. Soil Biology and Biochemistry, 2020, 151, 108023.	4.2	60
14	Using functional traits to model annual plant community dynamics. Ecology, 2020, 101, e03167.	1.5	6
15	Ecological Specialization and Rarity of Arable Weeds: Insights from a Comprehensive Survey in France. Plants, 2020, 9, 824.	1.6	10
16	Weeds: Against the Rules?. Trends in Plant Science, 2020, 25, 1107-1116.	4.3	25
17	Wild Pollinators in Arable Habitats: Trends, Threats and Opportunities. , 2020, , 187-201.		1
18	Optimizing the choice of service crops in vineyards to achieve both runoff mitigation and water provisioning for grapevine: a trait-based approach. Plant and Soil, 2020, 452, 87-104.	1.8	13

JONATHAN STORKEY

#	Article	IF	CITATIONS
19	IWMPRAISE $\hat{a} \in$ An EU Horizon 2020 Project Providing Integrated Weed Management Solutions to European Farmers. Outlooks on Pest Management, 2020, 31, 152-159.	0.1	4
20	A Weed's Eye View of Arable Habitats. , 2020, , 17-29.		0
21	The Future of Europe's Arable Wildlife. , 2020, , 353-364.		0
22	Livestock in diverse cropping systems improve weed management and sustain yields whilst reducing inputs. Journal of Applied Ecology, 2019, 56, 144-156.	1.9	48
23	Species matter when considering landscape effects on carabid distributions. Agriculture, Ecosystems and Environment, 2019, 285, 106631.	2.5	22
24	The contribution of spatial mass effects to plant diversity in arable fields. Journal of Applied Ecology, 2019, 56, 1560-1574.	1.9	31
25	Alley cropping agroforestry systems: Reservoirs for weeds or refugia for plant diversity?. Agriculture, Ecosystems and Environment, 2019, 284, 106584.	2.5	28
26	Plant–microbe networks in soil are weakened by centuryâ€kong use of inorganic fertilizers. Microbial Biotechnology, 2019, 12, 1464-1475.	2.0	77
27	Modelling the effect of spatially variable soil properties on the distribution of weeds. Ecological Modelling, 2019, 396, 1-11.	1.2	9
28	What makes a weed a weed? A largeâ€scale evaluation of arable weeds through a functional lens. American Journal of Botany, 2019, 106, 90-100.	0.8	63
29	The Future of Sustainable Crop Protection Relies on Increased Diversity of Cropping Systems and Landscapes. , 2019, , 199-209.		17
30	Understanding how changing soil nitrogen affects plant–pollinator interactions. Arthropod-Plant Interactions, 2019, 13, 671-684.	0.5	35
31	Reviewing research priorities in weed ecology, evolution and management: a horizon scan. Weed Research, 2018, 58, 250-258.	0.8	78
32	Using the response–effect trait framework to quantify the value of fallow patches in agricultural landscapes to pollinators. Applied Vegetation Science, 2018, 21, 267-277.	0.9	11
33	Atmospheric nitrogen deposition in terrestrial ecosystems: Its impact on plant communities and consequences across trophic levels. Functional Ecology, 2018, 32, 1757-1769.	1.7	116
34	Defining the habitat niche of <i>Alopecurus myosuroides</i> at the field scale. Weed Research, 2018, 58, 165-176.	0.8	15
35	The implications of spatially variable preâ€emergence herbicide efficacy for weed management. Pest Management Science, 2018, 74, 755-765.	1.7	11
36	What good is weed diversity?. Weed Research, 2018, 58, 239-243.	0.8	144

JONATHAN STORKEY

#	Article	IF	CITATIONS
37	Spatial Analysis of Digital Imagery of Weeds in a Maize Crop. ISPRS International Journal of Geo-Information, 2018, 7, 61.	1.4	5
38	Cover cropping with oilseed radish (Raphanus sativus) alone does not enhance deep burrowing earthworm (Lumbricus terrestris) midden counts. Soil and Tillage Research, 2017, 165, 11-15.	2.6	13
39	Using simulation models to investigate the cumulative effects of sowing rate, sowing date and cultivar choice on weed competition. Crop Protection, 2017, 95, 109-115.	1.0	16
40	Climate Change and Future Pollen Allergy in Europe. Environmental Health Perspectives, 2017, 125, 385-391.	2.8	216
41	Weeds in Organic Fertility-Building Leys: Aspects of Species Richness and Weed Management. Organic Farming, 2017, 3, 51-65.	0.3	8
42	The Unique Contribution of Rothamsted to Ecological Research at Large Temporal Scales. Advances in Ecological Research, 2016, , 3-42.	1.4	31
43	Designing a sampling scheme to reveal correlations between weeds and soil properties at multiple spatial scales. Weed Research, 2016, 56, 1-13.	0.8	17
44	Stocks and flows of natural and human-derived capital in ecosystem services. Land Use Policy, 2016, 52, 151-162.	2.5	155
45	Engineering a plant community to deliver multiple ecosystem services. Ecological Applications, 2015, 25, 1034-1043.	1.8	83
46	Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nature Climate Change, 2015, 5, 766-771.	8.1	147
47	A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Research, 2015, 55, 239-248.	0.8	161
48	Managing habitats on English farmland for insect pollinator conservation. Biological Conservation, 2015, 182, 215-222.	1.9	51
49	Over 150ÂYears of Long-Term Fertilization Alters Spatial Scaling of Microbial Biodiversity. MBio, 2015, 6,	1.8	57
50	Combining a weed traits database with a population dynamics model predicts shifts in weed communities. Weed Research, 2015, 55, 206-218.	0.8	20
51	Grassland biodiversity bounces back from long-term nitrogen addition. Nature, 2015, 528, 401-404.	13.7	133
52	A Process-Based Approach to Predicting the Effect of Climate Change on the Distribution of an Invasive Allergenic Plant in Europe. PLoS ONE, 2014, 9, e88156.	1.1	99
53	Can the storage effect hypothesis explain weed coâ€existence on the Broadbalk longâ€ŧerm fertiliser experiment?. Weed Research, 2014, 54, 445-456.	0.8	9
54	Utilisation of agri-environment scheme habitats to enhance invertebrate ecosystem service providers. Agriculture, Ecosystems and Environment, 2014, 183, 103-109.	2.5	31

JONATHAN STORKEY

#	Article	IF	CITATIONS
55	Seed germination response to temperature for a range of international populations of <i><scp>C</scp>onyza canadensis</i> . Weed Research, 2014, 54, 178-185.	0.8	31
56	Using functional traits to quantify the value of plant communities to invertebrate ecosystem service providers in arable landscapes. Journal of Ecology, 2013, 101, 38-46.	1.9	55
57	A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science, 2013, 24, 942-948.	1.1	209
58	The impact of agricultural intensification and land-use change on the European arable flora. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1421-1429.	1.2	277
59	Trophic links between functional groups of arable plants and beetles are stable at a national scale. Journal of Animal Ecology, 2012, 81, 4-13.	1.3	37
60	A processâ€based approach to modelling impacts of climate change on the damage niche of an agricultural weed. Global Change Biology, 2012, 18, 2071-2080.	4.2	45
61	Effects of the proportion and spatial arrangement of unâ€cropped land on breeding bird abundance in arable rotations. Journal of Applied Ecology, 2012, 49, 883-891.	1.9	30
62	Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 2010, 19, 2873-2893.	1.2	759
63	Using Assembly Theory to Explain Changes in a Weed Flora in Response to Agricultural Intensification. Weed Science, 2010, 58, 39-46.	0.8	129
64	A crossâ€ŧaxonomic index for quantifying the health of farmland biodiversity. Journal of Applied Ecology, 2009, 46, 1154-1162.	1.9	47
65	Providing the evidence base for environmental risk assessments of novel farm management practices. Environmental Science and Policy, 2008, 11, 579-587.	2.4	19
66	Managing arable weeds for biodiversity. Pest Management Science, 2007, 63, 517-523.	1.7	104
67	Reconciling the conservation of in-field biodiversity with crop production using a simulation model of weed growth and competition. Agriculture, Ecosystems and Environment, 2007, 122, 173-182.	2.5	42
68	A functional group approach to the management of UK arable weeds to support biological diversity. Weed Research, 2006, 46, 513-522.	0.8	124
69	Modelling assimilation rates of 14 temperate arable weed species as a function of the environment and leaf traits. Weed Research, 2005, 45, 361-370.	0.8	23
70	Modelling Seedling Growth Rates of 18 Temperate Arable Weed Species as a Function of the Environment and Plant Traits. Annals of Botany, 2004, 93, 681-689.	1.4	37
71	Symposium The Broadbalk long-term experiment at Rothamsted: what has it told us about weeds?. Weed Science, 2004, 52, 864-873.	0.8	83
72	The combination of a simulation and an empirical model of crop/weed competition to estimate yield loss from Alopecurus myosuroides in winter wheat. Field Crops Research, 2003, 84, 291-301.	2.3	15

#	Article	IF	CITATIONS
73	Relationship between temperature and the early growth ofTriticum aestivumand three weed species. Weed Science, 2000, 48, 467-473.	0.8	17