Naoufal Bahlawane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7704956/publications.pdf

Version: 2024-02-01

88 papers 3,251 citations

28 h-index

185998

55 g-index

92 all docs 92 docs citations 92 times ranked 4649 citing authors

#	Article	IF	CITATIONS
1	Chemical vapor deposition of CoFe2O4 micropillar arrays with enhanced magnetic properties. Journal of Alloys and Compounds, 2022, 890, 161758.	2.8	4
2	CNT-ZnO Core-Shell Photoanodes for Photoelectrochemical Water Splitting. Coatings, 2022, 12, 47.	1.2	8
3	Recent advances in vanadium pentoxide (V $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$) towards related applications in chromogenics and beyond: fundamentals, progress, and perspectives. Journal of Materials Chemistry C, 2022, 10, 4019-4071.	2.7	53
4	Conversionâ€Alloying Anode Materials for Sodium Ion Batteries. Small, 2021, 17, e2101137.	5.2	102
5	CNT nanoengineering for thermally stable selective solar absorption. Materials Today Communications, 2021, 28, 102552.	0.9	4
6	CNT–TiO ₂ core–shell structure: synthesis and photoelectrochemical characterization. RSC Advances, 2021, 11, 33169-33178.	1.7	3
7	Thermal Chemical Vapor Deposition of Superblack Randomly Oriented Carbon Nanotube Coatings. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900704.	0.8	3
8	Thermoresponsive Black VO2–Carbon Nanotube Composite Coatings for Solar Energy Harvesting. ACS Applied Nano Materials, 2020, 3, 8848-8857.	2.4	8
9	SiO2 thin film growth through a pure atomic layer deposition technique at room temperature. RSC Advances, 2020, 10, 18073-18081.	1.7	15
10	Thermal Chemical Vapor Deposition of Superblack Randomly Oriented Carbon Nanotube Coatings. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2070032.	0.8	0
11	Spectroscopic and mechanical studies of RF plasma-polymerized films deposited at low temperature from organosilane precursors. , 2020, , 237-262.		O
12	Enabling Full Conversion Reaction with High Reversibility to Approach Theoretical Capacity for Sodium Storage. Advanced Functional Materials, 2019, 29, 1906680.	7.8	29
13	Vanadium Oxide as a Key Constituent in Reconfigurable Metamaterials. , 2019, , .		1
14	Thermal Conversion of Ethanol into Carbon Nanotube Coatings with Adjusted Packing Density. ACS Omega, 2019, 4, 10405-10410.	1.6	10
15	Atomic layer deposition of vanadium oxides: process and application review. Materials Today Chemistry, 2019, 12, 396-423.	1.7	46
16	Study of VO2 thin filmÂsynthesis by atomic layer deposition. Materials Today Chemistry, 2019, 12, 332-342.	1.7	20
17	Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Materials, 2019, 18, 107-113.	9.5	105
18	Prussian Blue Analogs for Rechargeable Batteries. IScience, 2018, 3, 110-133.	1.9	327

#	Article	IF	CITATIONS
19	Lowâ€Temperature Thermal CVD of Superblack Carbon Nanotube Coatings. Advanced Materials Interfaces, 2017, 4, 1700238.	1.9	15
20	Visible Thermochromism in Vanadium Pentoxide Coatings. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21447-21456.	4.0	45
21	Broadband characterization of congruent lithium niobate from mHz to optical frequencies. Journal Physics D: Applied Physics, 2017, 50, 36LT01.	1.3	11
22	Optical and morphological properties of thermochromic V $2~\rm O~5$ coatings. Data in Brief, 2017, 14, 348-353.	0.5	2
23	Tunable thermochromic properties of V 2 O 5 coatings. Materials Today Physics, $2017, 2, 1-5$.	2.9	20
24	Light modulation in phase change disordered metamaterial - A smart cermet concept. Materials Today Physics, 2017, 3, 41-47.	2.9	6
25	Innovative CNT-based composite coatings for the stray light reduction. , 2017, , .		7
26	Electrical Switching in Semiconductor-Metal Self-Assembled VO2 Disordered Metamaterial Coatings. Scientific Reports, 2016, 6, 37699.	1.6	36
27	Transparent conductive CuCrO ₂ thin films deposited by pulsed injection metal organic chemical vapor deposition: up-scalable process technology for an improved transparency/conductivity trade-off. Journal of Materials Chemistry C, 2016, 4, 4278-4287.	2.7	63
28	Atomic layer deposition of cobalt carbide films and their magnetic properties using propanol as a reducing agent. Applied Surface Science, 2016, 379, 523-529.	3.1	23
29	<l>A Special Section on</l> Nanocomposites: Synthesis and Optical Related Applications. Journal of Nanoscience and Nanotechnology, 2016, 16, 10067-10068.	0.9	0
30	Synthesis of vanadium oxide films with controlled morphologies: Impact on the metal-insulator transition behaviour. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1582-1587.	0.8	14
31	Improvement of the photocatalytic degradation property of atomic layer deposited ZnO thin films: the interplay between film properties and functional performances. Journal of Materials Chemistry A, 2015, 3, 11453-11461.	5.2	38
32	Catalytic complete oxidation of acetylene and propene over clay versus cordierite honeycomb monoliths without and with chemical vapor deposited cobalt oxide. Chemical Engineering Journal, 2015, 262, 1252-1259.	6.6	31
33	Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy, 2014, 4, 23-30.	8.2	307
34	Vanadium Oxide Compounds : Structure, Properties, and Growth from the Gas Phase. Chemical Vapor Deposition, 2014, 20, 299-311.	1.4	135
35	Tailoring the Properties of Atomic Layer Deposited Nickel and Nickel Carbide Thin Films via Chain-Length Control of the Alcohol Reducing Agents. Journal of Physical Chemistry C, 2014, 118, 23385-23392.	1.5	36
36	Molecular layer deposition of amine-containing alucone thin films. Surface and Coatings Technology, 2013, 230, 101-105.	2.2	11

#	Article	IF	CITATIONS
37	Towards biofuel combustion with an easily extruded clay as a natural catalyst. Applied Energy, 2013, 107, 149-156.	5.1	11
38	Structure sensitivity of propene oxidation over Co-Mn spinels. Proceedings of the Combustion Institute, 2013, 34, 2261-2268.	2.4	38
39	Synthesis of the Catalytically Active Mn ₃ O ₄ Spinel and Its Thermal Properties. Journal of Physical Chemistry C, 2013, 117, 6218-6224.	1.5	149
40	Controlled synthesis of Co3O4 spinel with Co(acac)3 as precursor. RSC Advances, 2012, 2, 10809.	1.7	32
41	Abnormal behaviors in electrical transport properties of cobalt-doped tin oxide thin films. Journal of Materials Chemistry, 2012, 22, 16060.	6.7	22
42	Advances in the deposition chemistry of metal-containing thin films using gas phase processes. Chemical Science, 2012, 3, 929-941.	3.7	29
43	Catalytic oxidation of VOCs over mixed Co–Mn oxides. Applied Catalysis B: Environmental, 2012, 117-118, 125-134.	10.8	220
44	Preparation and characterisation of chromium-doped cobalt oxide spinel thin films. Journal of Materials Science, 2012, 47, 1348-1353.	1.7	24
45	Unusual enhancement in electrical conductivity of tin oxide thin films with zinc doping. Physical Chemistry Chemical Physics, 2011, 13, 5760.	1.3	18
46	CO and ethanol oxidation over LaCoO3 planar model catalysts: Effect of the thickness. Catalysis Communications, 2011, 12, 1344-1350.	1.6	20
47	Application of nBu2Sn(acac)2 for the deposition of nanocrystallite SnO2 films: Nucleation, growth and physical properties. Journal of Alloys and Compounds, 2011, 509, 7798-7802.	2.8	6
48	CVD of Ru, Pt and Pt-based alloy thin films using ethanol as mild reducing agent. Materials Chemistry and Physics, 2011, 125, 757-762.	2.0	17
49	Rational Design of Functional Oxide Thin Films with Embedded Magnetic or Plasmonic Metallic Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 9957-9960.	7.2	25
50	The growth of nanoscale ZnO films by pulsed-spray evaporation chemical vapor deposition and their structural, electric and optical properties. Thin Solid Films, 2010, 519, 284-288.	0.8	3
51	Structure, Electrical Properties, and Surface Reactivity of CVD-Made Functional Complex Oxides. Journal of the Electrochemical Society, 2010, 157, D16.	1.3	5
52	Nickel and Nickel-Based Nanoalloy Thin Films from Alcohol-Assisted Chemical Vapor Deposition. Chemistry of Materials, 2010, 22, 92-100.	3.2	44
53	Effect of Nucleation and Growth Kinetics on the Electrical and Optical Properties of Undoped ZnO Films. Journal of Physical Chemistry C, 2010, 114, 5121-5125.	1.5	10
54	Influence of the Arrangement of the Octahedrally Coordinated Trivalent Cobalt Cations on the Electrical Charge Transport and Surface Reactivity. Chemistry of Materials, 2010, 22, 4158-4165.	3.2	68

#	Article	IF	CITATIONS
55	Functional Complex Oxides: Interplay between the Structure, Electrical Properties and Surface Reactivity. ECS Meeting Abstracts, 2009, , .	0.0	0
56	Investigation of Growth, Structural and Optical Properties of CeO ₂ Nanocrystalline Thin Films Prepared by Pulsed Spray-Evaporation Chemical Vapor Deposition (PSE-CVD). Nanoscience and Nanotechnology Letters, 2009, 1, 134-139.	0.4	3
57	Unusual two-dimensional electrical charge transport at the surface of polycrystalline perovskite ultrathin films. Journal of Applied Physics, 2009, 106, 073714.	1.1	3
58	Pulsed Spray Evaporation CVD of Functional Complex Oxides: Interplay between the Structure, Electrical Properties and Surface Reactivity. ECS Transactions, 2009, 25, 265-272.	0.3	2
59	CVD of Conducting Ultrathin Copper Films. Journal of the Electrochemical Society, 2009, 156, D452.	1.3	15
60	Chemical vapor deposition and electric characterization of perovskite oxides LaMO3 (M=Co, Fe, Cr and) Tj ETQqC	0 0 0 rgBT 1.4	/Oyerlock 10
61	Changes in the structural and optical properties of CeO2 nanocrystalline films: Effect of film thickness. Journal of Alloys and Compounds, 2009, 485, L52-L55.	2.8	32
62	Tailoring the properties and the reactivity of the spinel cobalt oxide. Physical Chemistry Chemical Physics, 2009, 11, 9224.	1.3	144
63	Catalytic oxidation of hydrocarbons over Co3O4 catalyst prepared by CVD. Catalysis Communications, 2009, 11, 118-122.	1.6	53
64	Mass-spectrometric monitoring of the thermally induced decomposition of trimethylgallium, tris(<i>tert</i> -butyl)gallium, and triethylantimony at low pressure conditions. Journal of the American Society for Mass Spectrometry, 2008, 19, 947-954.	1.2	15
65	Low-Temperature Thermolysis Behavior of Tetramethyl- and Tetraethyldistibines. Journal of the American Society for Mass Spectrometry, 2008, 19, 1336-1342.	1.2	8
66	Noncatalytic thermocouple coatings produced with chemical vapor deposition for flame temperature measurements. Review of Scientific Instruments, 2007, 78, 013905.	0.6	21
67	Effect of Solvent on the Growth of Co and Co ₂ C Using Pulsed-Spray Evaporation Chemical Vapor Deposition. Chemistry of Materials, 2007, 19, 6206-6211.	3.2	42
68	Preparation of Doped Spinel Cobalt Oxide Thin Films and Evaluation of their Thermal Stability. Chemical Vapor Deposition, 2007, 13, 118-122.	1.4	29
69	CVD of Metals Using Alcohols and Metal Acetylacetonates, Part I: Optimization of Process Parameters and Electrical Characterization of Synthesized Films. Chemical Vapor Deposition, 2007, 13, 219-226.	1.4	39
70	CVD of Metals Using Alcohols and Metal Acetylacetonates, Part II: Role of Solvent and Characterization of Metal Films Made by Pulsed Spray Evaporation CVD. Chemical Vapor Deposition, 2007, 13, 227-231.	1.4	35
71	Alcoholâ€Assisted CVD of Silver Using Commercially Available Precursors. Chemical Vapor Deposition, 2007, 13, 401-407.	1.4	26
72	Single source precursor-based HV-MOCVD deposition of binary group 13-antimonide thin films. Surface and Coatings Technology, 2007, 201, 9071-9075.	2.2	6

#	Article	IF	CITATIONS
73	Catalytically enhanced H2-free CVD of transition metals using commercially available precursors. Surface and Coatings Technology, 2007, 201, 8914-8918.	2.2	18
74	Self-catalyzed chemical vapor deposition method for the growth of device-quality metal thin films. Microelectronic Engineering, 2007, 84, 2481-2485.	1.1	20
75	Gas Phase Synthesis of Metal Oxide Monolithic Catalysts for Hydrocarbon Deep Oxidation. Studies in Surface Science and Catalysis, 2006, 162, 625-632.	1.5	1
76	Systematic microstructural investigation of alumina deposited by liquid fuel combustion chemical vapor deposition. Surface and Coatings Technology, 2006, 200, 4097-4103.	2.2	13
77	Kinetics of methane combustion over CVD-made cobalt oxide catalysts. Applied Catalysis B: Environmental, 2006, 67, 168-176.	10.8	116
78	CVD with Tri-nbutylphosphine Silver(I) Complexes: Mass Spectrometric Investigations and Depositions. Chemical Vapor Deposition, 2005, 11, 195-205.	1.4	26
79	Investigation of CVD Processes to Perform Dense \hat{l}_{\pm} -Alumina Coating on Superalloys. Journal of the Electrochemical Society, 2004, 151, C182.	1.3	7
80	Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition. Applied Catalysis B: Environmental, 2004, 53, 245-255.	10.8	123
81	CVD of Al2O3 Thin Films Using Aluminum Tri-isopropoxide. Chemical Vapor Deposition, 2003, 9, 194-198.	1.4	53
82	Structural Investigation of Alumina Thin Films Deposited by Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	0
83	A high-temperature oxidation-resistant coating, for graphite, prepared by atmospheric pressure chemical vapor deposition. Thin Solid Films, 2001, 394, 297-302.	0.8	16
84	Novel sol–gel process depositing α-Al2O3 for the improvement of graphite oxidation-resistance. Thin Solid Films, 2001, 396, 126-130.	0.8	30
85	Multilayer composites in Al2O3/MoSi2 system. Materials Chemistry and Physics, 2001, 67, 256-262.	2.0	21
86	Effect of Moisture on the Highâ€Temperature Stability of Unidirectionally Solidified Al ₂ O ₃ /YAG Eutectic Composites. Journal of the American Ceramic Society, 2000, 83, 3077-3081.	1.9	20
87	Apport des techniques XRFS et LEEIXS à l'étude de la formation de films de silice sur acier par PACVD. European Physical Journal Special Topics, 1998, 08, Pr5-271-Pr5-278.	0.2	0
88	Improvement of High Temperature Corrosion Resistance of Carbon by Ceramic Oxides Coats. Ceramic Engineering and Science Proceedings, 0, , 691-698.	0.1	2