List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7704888/publications.pdf Version: 2024-02-01

FRIC ACUADO

#	Article	IF	CITATIONS
1	Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials, 1998, 19, 133-139.	5.7	587
2	In vivo bone regeneration with injectable calcium phosphate biomaterial: A three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials, 2005, 26, 5444-5453.	5.7	175
3	Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes. , 1999, 47, 28-35.		138
4	Biphasic calcium phosphate/hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone, 1999, 25, 59S-61S.	1.4	120
5	Radiation effects on bone healing and reconstruction: interpretation of the literature. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2010, 109, 173-184.	1.6	106
6	Bone growth in rapid prototyped porous titanium implants. Journal of Biomedical Materials Research - Part A, 2008, 85A, 664-673.	2.1	101
7	Elaboration conditions influence physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramics. Journal of Materials Science: Materials in Medicine, 1999, 10, 199-204.	1.7	86
8	A New Injectable Calcium Phosphate Biomaterial for Immediate Bone Filling of Extraction Sockets: A Preliminary Study in Dogs. Journal of Periodontology, 1999, 70, 375-383.	1.7	85
9	Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution. Bone, 1999, 25, 71S-74S.	1.4	72
10	Small-animal models for testing macroporous ceramic bone substitutes. Journal of Biomedical Materials Research Part B, 2005, 72B, 69-78.	3.0	71
11	Enhanced bone integration of implants with increased surface roughness: a long term study in the sheep. Journal of Dentistry, 2002, 30, 195-203.	1.7	70
12	Calcium-deficient apatite: A firstin vivo study concerning bone ingrowth. Journal of Biomedical Materials Research Part B, 2003, 65A, 402-408.	3.0	70
13	In vitro characterization andin vivo properties of a carbonated apatite bone cement. Journal of Biomedical Materials Research Part B, 2002, 60, 633-642.	3.0	63
14	Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area: a dog study. Bone, 2005, 36, 323-330.	1.4	60
15	Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. Journal of Materials Science: Materials in Medicine, 2010, 21, 855-861.	1.7	58
16	Human Growth Hormone Locally Released in Bone Sites by Calcium-Phosphate Biomaterial Stimulates Ceramic Bone Substitution Without Systemic Effects: A Rabbit Study. Journal of Bone and Mineral Research, 1998, 13, 739-748.	3.1	52
17	MBCP® biphasic calcium phosphate granules and tissucol® fibrin sealant in rabbit femoral defects: The effect of fibrin on bone ingrowth. Journal of Materials Science: Materials in Medicine, 2005, 16, 29-35.	1.7	51
18	Noninvasive bone replacement with a new injectable calcium phosphate biomaterial. Journal of Biomedical Materials Research Part B, 2003, 66A, 47-54.	3.0	50

#	Article	IF	CITATIONS
19	Osteogenic properties of calcium phosphate ceramics and fibrin glue based composites. Journal of Materials Science: Materials in Medicine, 2007, 18, 225-235.	1.7	50
20	Effects of FGF-2 release from a hydrogel polymer on bone mass and microarchitecture. Biomaterials, 2008, 29, 1593-1600.	5.7	48
21	Osteoconductive properties of poly(96L/4D-lactide)/beta-tricalcium phosphate in long term animal model. Biomaterials, 2011, 32, 3166-3177.	5.7	48
22	The early remodeling phases around titanium implants: a histomorphometric assessment of bone quality in a 3- and 6-month study in sheep. International Journal of Oral and Maxillofacial Implants, 1999, 14, 189-96.	0.6	47
23	Osteointegration of femoral stem prostheses with a bilayered calcium phosphate coating. Biomaterials, 2006, 27, 1119-1128.	5.7	42
24	In vivo biological performance of composites combining micro-macroporous biphasic calcium phosphate granules and fibrin sealant. Archives of Orthopaedic and Trauma Surgery, 2005, 125, 153-159.	1.3	40
25	Bone Mass and Bone Quality Are Altered by Hypoactivity in the Chicken. PLoS ONE, 2015, 10, e0116763.	1.1	40
26	Mandibular Segmental Defect Regenerated With Macroporous Biphasic Calcium Phosphate, Collagen Membrane, and Bone Marrow Graft in Dogs. JAMA Otolaryngology, 2010, 136, 971.	1.5	39
27	A non-steroidal anti-inflammatory drug (ketoprofen) does not delay β-TCP bone graft healing. Acta Biomaterialia, 2010, 6, 3310-3317.	4.1	36
28	In VivoRetrovirus-Mediated Gene Transfer to the Liver of Dogs Results in Transient Expression and Induction of a Cytotoxic Immune Response. Human Gene Therapy, 1999, 10, 2917-2925.	1.4	32
29	Influence of Local Environment on Incorporation of Ceramic for Lumbar Fusion. Spine, 1997, 22, 1683-1689.	1.0	30
30	Growth hormone-loaded macroporous calcium phosphate ceramic:In vitro biopharmaceutical characterization and preliminaryin vivo study. , 1998, 40, 560-566.		30
31	Ultrastructural and Electron Diffraction of the Bone-Ceramic Interfacial Zone in Coral and Biphasic CaP Implants. Calcified Tissue International, 1998, 62, 437-442.	1.5	27
32	Reconstruction of irradiated bone segmental defects with a biomaterial associating MBCP+®, microstructured collagen membrane and total bone marrow grafting: An experimental study in rabbits. Journal of Biomedical Materials Research - Part A, 2009, 91A, 1160-1169.	2.1	24
33	Hybrid composites of calcium phosphate granules, fibrin glue, and bone marrow for skeletal repair. Journal of Biomedical Materials Research - Part A, 2007, 81A, 399-408.	2.1	23
34	Hypodynamia Alters Bone Quality and Trabecular Microarchitecture. Calcified Tissue International, 2017, 100, 332-340.	1.5	20
35	Influence of calcium chloride and aprotinin in the in vivo biological performance of a composite combining biphasic calcium phosphate granules and fibrin sealant. Journal of Materials Science: Materials in Medicine, 2007, 18, 1489-1495.	1.7	19
36	Bilayered calcium phosphate coating to promote osseointegration of a femoral stem prosthesis. Journal of Materials Science: Materials in Medicine, 2003, 14, 219-227.	1.7	14

#	Article	IF	CITATIONS
37	β-TCP granules mixed with reticulated hyaluronic acid induce an increase in bone apposition. Biomedical Materials (Bristol), 2014, 9, 015001.	1.7	14
38	Alveolar ridge augmentation in irradiated rabbit mandibles. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1519-1526.	2.1	12
39	Polyhydroxyalkanoate (PHBV) fibers obtained by a wet spinning method: Good in vitro cytocompatibility but absence of in vivo biocompatibility when used as a bone graft. Morphologie, 2019, 103, 94-102.	0.5	12
40	Biofunctionality of MBCP ceramic granules (TricOsâ,,¢) plus fibrin sealant (Tisseel®) versus MBCP ceramic granules as a filler of large periprosthetic bone defects: an investigative ovine study. Journal of Materials Science: Materials in Medicine, 2010, 21, 1949-1958.	1.7	9
41	Does milling one-piece titanium dental implants induce osteocyte and osteoclast changes?. Morphologie, 2011, 95, 51-59.	0.5	9
42	Long-Term Quantitative Evaluation of Muscle and Bone Wasting Induced by Botulinum Toxin in Mice Using Microcomputed Tomography. Calcified Tissue International, 2018, 102, 695-704.	1.5	9
43	Identification of functional, short-lived isoform of linker for activation of T cells (LAT). Genes and Immunity, 2014, 15, 449-456.	2.2	8
44	Injectable biphasic calcium phosphate bioceramic: The HYDROS® concept. Bio-Medical Materials and Engineering, 2009, 19, 71-76.	0.4	6
45	Osteopromotion of Biphasic Calcium Phosphate granules in critical size defects after osteonecrosis induced by focal heating insults. Irbm, 2013, 34, 337-341.	3.7	6
46	Some Biomechanical and Histologic Characteristics of Early-Loaded Locking Pin and Expandable Implants: A Pilot Histologic Canine Study. Clinical Implant Dentistry and Related Research, 2004, 6, 33-39.	1.6	5
47	Hyaluronic Acid Stimulates Osseointegration of β-TCP in Young and Old Ewes. Calcified Tissue International, 2019, 105, 487-496.	1.5	5
48	Microarchitecture of titanium cylinders obtained by additive manufacturing does not influence osseointegration in the sheep. International Journal of Energy Production and Management, 2021, 8, rbab021.	1.9	5
49	<i>In Vivo</i> Comparative Study of Two Injectable/Moldable Calcium Phosphate Bioceramics. Key Engineering Materials, 0, 529-530, 291-295.	0.4	3
50	Unwrapping microcomputed tomographic images for measuring cortical osteolytic lesions in the 5T2 murine model of myeloma treated by bisphosphonate. Micron, 2015, 68, 107-114.	1.1	3
51	Microcomputed tomography (microCT) and histology of the mandibular canal in human and laboratory animals. Morphologie, 2018, 102, 263-275.	0.5	3
52	Osseointegration of two types of titanium cylinders with geometric or trabecular microarchitecture: A nanotomographic and histomorphometric study. Morphologie, 2022, 106, 80-91.	0.5	3
53	Legg Calvé Perthes disease in the dog. Morphologie, 2021, 105, 143-147.	0.5	3
54	Minimal Invasive Surgery in Spine, New Development of Injectable Cereamic MBCP for Vertebral Body Bone Filling: In Vivo Experiment. Key Engineering Materials, 2005, 284-286, 803-806.	0.4	2

#	Article	IF	CITATIONS
55	Repairing Segmental Defect with a Composite Associating Collagen Membrane and MBCP® Combined with Total Bone Marrow Graft in Irradiated Bone Defect: an Experimental Study in Rabbit. Key Engineering Materials, 2008, 361-363, 1245-1248.	0.4	2
56	Improvement of Bone Ingrowth on PEEK Surface Implant. Key Engineering Materials, 2011, 493-494, 795-799.	0.4	2
57	A case of polyostotic osteosarcoma with kidney metastases in a dog: Histopathology and microcomputed tomographic analysis. Morphologie, 2014, 98, 187-192.	0.5	2
58	Multiphasic Biomaterials: A Concept for Bone Substitutes Developed in the "Pays de la Loire". Key Engineering Materials, 2007, 361-363, -171.	0.4	1
59	PL DLLA Calcium Phosphate Composite Combined with MBCP Gel® for New Surgical Technologies: Resorbable Osteosynthesis and Bone Substitute. Key Engineering Materials, 2007, 361-363, 571-574.	0.4	1
60	Bone grafted with β â€TCP granules in the rabbit: A microcomputed tomographic, histologic, Raman microspectrometric, and Raman imaging study. Journal of Raman Spectroscopy, 2020, 51, 2435-2446.	1.2	1
61	Improvement of Radio Opacity of Injectable Bone Substitute MBCP Gel TM for Minimal Invasive Surgery MIS. Key Engineering Materials, 2008, 361-363, 1277-1280.	0.4	0
62	Periostal Reconstruction Using New Porcine Microstructured Collagen Membrane and Calcium Phosphate Cement: A Dog Model. Key Engineering Materials, 0, 396-398, 257-260.	0.4	0
63	Injectable Microparticles of Bioceramic for Bone Reconstruction Animal and Human Applications. HYDROSâ"¢ Concept. Key Engineering Materials, 2011, 493-494, 714-717.	0.4	0
64	Essential Requirements for Resorbable Bioceramic Development: Research, Manufacturing, and Preclinical Studies. , 2016, , 471-501.		0
65	Essential Requirements for Resorbable Bioceramic Development: Research, Manufacturing, and Preclinical Studies. , 2015, , 1-31.		0