Gin Boay Chai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7704833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probabilistic structural reliability analysis of a horizontal axis tidal turbine blade by considering the moisture effects on the blade material. Marine Systems and Ocean Technology, 2020, 15, 253-269.	1.0	0
2	Probabilistic bending behaviour of a symmetric multi-directional composite laminate subjected to moisture induced material property asymmetry. Composite Structures, 2020, 254, 112845.	5.8	2
3	Fatigue Life Prediction of GLARE Composites Using Regression Tree Ensembleâ€Based Machine Learning Model. Advanced Theory and Simulations, 2020, 3, 2000048.	2.8	16
4	Influence of stress ratio and stress concentration on the fatigue behaviour of hygrothermal aged multidirectional CFRP composite laminate. International Journal of Fatigue, 2020, 137, 105651.	5.7	12
5	Multiscale finite element analyses on mechanical properties of graphene-reinforced composites. Mechanics of Advanced Materials and Structures, 2019, 26, 1735-1742.	2.6	10
6	Flexural fatigue life prediction of CFRP-Nomex honeycomb sandwich beams. Composite Structures, 2018, 192, 225-231.	5.8	14
7	Influence of fiber type on the impact response of titanium-based fiber-metal laminates. International Journal of Impact Engineering, 2018, 114, 32-42.	5.0	81
8	A Numerical Study on High Velocity Impact Behavior of Titanium Based Fiber Metal Laminates. Journal of Composites Science, 2018, 2, 62.	3.0	10
9	A finite element method to investigate the elastic properties of pillared graphene sheet under different conditions. Carbon, 2018, 140, 210-217.	10.3	14
10	Fatigue in Fiber-Metal Laminates for Small Wind Turbine Blades Application. MATEC Web of Conferences, 2018, 165, 07005.	0.2	0
11	Mode-I Metal-Composite Interface Fracture Testing for Fibre Metal Laminates. Advances in Materials Science and Engineering, 2018, 2018, 1-11.	1.8	13
12	Mechanical behaviors of Ti/CFRP/Ti laminates with different surface treatments of titanium sheets. Composite Structures, 2017, 163, 21-31.	5.8	93
13	Delamination growth behavior of a woven E-glass/bismaleimide composite in seawater environment. Composites Part B: Engineering, 2016, 106, 332-343.	12.0	44
14	Quantification of flexural fatigue life and 3D damage in carbon fibre reinforced polymer laminates. Composites Part A: Applied Science and Manufacturing, 2016, 90, 778-785.	7.6	23
15	Low-velocity impact response of composite sandwich panels. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230, 388-399.	1.1	2
16	Long-term life prediction of woven CFRP laminates under three point flexural fatigue. Composites Part B: Engineering, 2016, 91, 539-547.	12.0	18
17	Impact face influence on low velocity impact performance of interply laminated plates. Proceedings of SPIE, 2015, , .	0.8	0
18	Flexural behavior of epoxy-carbon composite with diffusion effect. Proceedings of SPIE, 2015, , .	0.8	0

#	Article	IF	CITATIONS
19	Upper and lower bound buckling load of perfect and delaminated fiber-reinforced composite columns. Composite Structures, 2015, 122, 376-389.	5.8	2
20	Evaluation of seawater exposure on mechanical properties and failure behavior of E-Glass/BMI composite for marine use. Proceedings of SPIE, 2015, , .	0.8	1
21	A similitude approach towards the understanding of low velocity impact characteristics of bi-layered hybrid composite structures. Composite Structures, 2015, 131, 183-192.	5.8	14
22	Life prediction of woven CFRP structure subject to static and fatigue loading. Composite Structures, 2015, 119, 185-194.	5.8	24
23	Low-velocity impact response of fiber-metal laminates – A theoretical approach. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2014, 228, 301-311.	1.1	5
24	Low velocity impact response of fibre-metal laminates – A review. Composite Structures, 2014, 107, 363-381.	5.8	252
25	A layer-wise behavioral study of metal based interply hybrid composites under low velocity impact load. Composite Structures, 2014, 117, 17-31.	5.8	33
26	A review of advances in fatigue and life prediction of fiber-reinforced composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2013, 227, 179-195.	1.1	19
27	Application of additive manufacturing techniques in sports footwear. Virtual and Physical Prototyping, 2013, 8, 249-252.	10.4	26
28	Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact. Composite Structures, 2013, 101, 204-214.	5.8	92
29	The Response of Woven CFRP under Static and Fatigue Loading. Advanced Materials Research, 2013, 651, 221-226.	0.3	2
30	Low-velocity impact response of fibre–metal laminates – Experimental and finite element analysis. Composites Science and Technology, 2012, 72, 1793-1802.	7.8	95
31	A review of low-velocity impact on sandwich structures. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2011, 225, 207-230.	1.1	53
32	A modified energy-balance model to predict low-velocity impact response for sandwich composites. Composite Structures, 2011, 93, 1385-1393.	5.8	37
33	Effect of adhesive in sandwich panels subjected to low-velocity impact. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2011, 225, 171-181.	1.1	4
34	Bending and buckling of a generally laminated composite beam-column. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2010, 224, 1-7.	1.1	3
35	Ductile and Brittle Material Failures in Low-Velocity Impact. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2010, 224, 162-172.	1.1	1
36	Validating the dynamic coefficients of bearing pedestals in a multi-mode rotor—bearing system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223, 1359-1378.	2.1	2

#	Article	IF	CITATIONS
37	A model to predict low-velocity impact response and damage in sandwich composites. Composites Science and Technology, 2008, 68, 1348-1356.	7.8	149
38	Coupling effects in bending, buckling and free vibration of generally laminated composite beams. Composites Science and Technology, 2008, 68, 1664-1670.	7.8	28
39	Buckling of composite beams with two enveloped delaminations: Lower and upper bounds. Computers and Structures, 2008, 86, 2155-2165.	4.4	8
40	Low-velocity impact failure of aluminium honeycomb sandwich panels. Composite Structures, 2008, 85, 20-28.	5.8	137
41	Effect of flexural stiffness estimates on the buckling load of delaminated composite beams. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2008, 222, 91-102.	1.1	3
42	Analytical and numerical studies on the buckling of delaminated composite beams. Composite Structures, 2007, 80, 307-319.	5.8	22
43	Mechanical properties of Nomex material and Nomex honeycomb structure. Composite Structures, 2007, 80, 588-594.	5.8	199
44	Analytical and Numerical Analyses of Delamination Buckling in Layer Beams. Solid State Phenomena, 2006, 111, 75-78.	0.3	0
45	Quasi-Static and Low-Velocity Impact Failure of Aluminium Honeycomb Sandwich Panels. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2006, 220, 53-66.	1.1	11
46	A study on residual stresses in polymer composites using moiré interferometry. Advanced Composite Materials, 2004, 13, 237-253.	1.9	21
47	Polymer-based stents produced by rapid prototyping and tooling. International Journal of Product Development, 2004, 1, 172.	0.2	2
48	Residual interlaminar deformation analysis in the carbon/epoxy composites using micro-moir $ ilde{A}$ [©] interferometry. Composites Science and Technology, 2003, 63, 171-175.	7.8	7
49	High resolution AFM scanning Moir \tilde{A} [©] method and its application to the micro-deformation in the BGA electronic package. Microelectronics Reliability, 2002, 42, 1219-1227.	1.7	40
50	High-resolution micro-moire methods: principles and applications. , 2001, 4596, 261.		1
51	<title>Photoelastic stress analysis of internal fixation techniques for femur shaft crack</title> . , 2001, , .		0
52	Micro-moire methods: optical and scanning techniques. , 2001, 4416, 54.		5
53	Thermal deformation measurement of electronic packages using the atomic force microscope scanning moiré technique. Review of Scientific Instruments, 2001, 72, 2180-2185.	1.3	26
54	Finite element technique for design of stub columns. Thin-Walled Structures, 2000, 37, 97-112.	5.3	32

#	Article	IF	CITATIONS
55	In-plane deformation measurement using the atomic force microscope moiré method. Nanotechnology, 2000, 11, 24-29.	2.6	68
56	Determination of isoclinic and isochromatic parameters using the three-load method. Measurement Science and Technology, 2000, 11, 532-537.	2.6	26
57	Novel full-field automated photoelastic analysis technique. Optical Engineering, 2000, 39, 2689.	1.0	4
58	Stress distribution in sandwich beams under tension. Composite Structures, 1999, 45, 195-204.	5.8	8
59	Stress analysis of a postbuckled laminated composite plate. Structural Engineering and Mechanics, 1999, 7, 377-386.	1.0	3
60	Comparisons of experimental and theoretical frequencies for rectangular plates with various boundary conditions and added masses. International Journal of Mechanical Sciences, 1998, 40, 1119-1131.	6.7	18
61	A COMPARATIVE STUDY OF VIBRATING LOADED PLATES BETWEEN THE RAYLEIGH-RITZ AND EXPERIMENTAL METHODS. Journal of Sound and Vibration, 1997, 199, 285-297.	3.9	6
62	AN IMPROVED MODEL FOR PREDICTING FUNDAMENTAL FREQUENCIES OF PLATES CARRYING MULTIPLE MASSES. Journal of Sound and Vibration, 1997, 200, 235-239.	3.9	5
63	EXPERIMENTAL INVESTIGATIONS AND SHAPE FUNCTIONS FOR LATERAL VIBRATION OF AXIALLY CONSTRAINED BEAMS WITH A CONCENTRATED MASS AT THE CENTRE. Journal of Sound and Vibration, 1997, 202, 446-451.	3.9	8
64	Free vibration of laminated composite plates with a central circular hole. Composite Structures, 1996, 35, 357-368.	5.8	62
65	Buckling Response of Symmetric Laminated Plates*. Mechanics Based Design of Structures and Machines, 1996, 24, 439-452.	0.6	3
66	Stability and failure of symmetrically laminated plates. Structural Engineering and Mechanics, 1996, 4, 485-496.	1.0	2
67	Frequency analysis of a S-C-S-C plate carrying a concentrated mass. Journal of Sound and Vibration, 1995, 179, 170-177.	3.9	6
68	Tension effects on the natural frequencies of centre-loaded clamped beams. Journal of Sound and Vibration, 1995, 181, 727-736.	3.9	7
69	Frequency analysis of rectangular isotropic plates carrying a concentrated mass. Computers and Structures, 1995, 56, 39-48.	4.4	17
70	Analysis of vane-spring structures. Computers and Structures, 1995, 57, 447-453.	4.4	1
71	Free vibration of generally laminated composite plates with various edge support conditions. Composite Structures, 1994, 29, 249-258.	5.8	21
72	Buckling of generally laminated composite plates with various edge support conditions. Composite Structures, 1994, 29, 299-310.	5.8	16

#	Article	IF	CITATIONS
73	Numerical and experimental study of large deflection of symmetrically laminated composite plates in compression. Structural Engineering and Mechanics, 1994, 2, 359-367.	1.0	2
74	On The Natural Frequencies Of Beams Carrying A Concentrated Mass. Journal of Sound and Vibration, 1993, 160, 161-166.	3.9	25
75	The effect of varying the support conditions on the buckling of laminated composite plates. Composite Structures, 1993, 24, 99-106.	5.8	25
76	Vibration analysis of laminated composite plates: TV-holography and finite element method. Composite Structures, 1993, 23, 273-283.	5.8	9
77	Buckling strength optimization of laminated composite plates. Computers and Structures, 1993, 46, 77-82.	4.4	20
78	Experimental and analytical investigations of vibration frequencies for centre-loaded beams. Computers and Structures, 1993, 48, 1157-1162.	4.4	17
79	Buckling of generally laminated composite plates. Composites Science and Technology, 1992, 45, 125-133.	7.8	24
80	The instability behaviour of laminated panels with elastically rotationally restrined edges. Composite Structures, 1991, 19, 41-65.	5.8	12
81	An experimental study on laminated panels in compression. Composite Structures, 1991, 19, 67-87.	5.8	14
82	Large deflections of laminated composite plates. Composites Science and Technology, 1991, 42, 349-360.	7.8	7
83	Stability Study of Coupling Responses in Laminates. Journal of Composites Technology and Research, 1991, 13, 187.	0.4	9
84	Energy Absorption Capacity of Expanding Tube with Fiber-Reinforcement. Key Engineering Materials, 0, 626, 57-61.	0.4	0