List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7704813/publications.pdf Version: 2024-02-01

		101543	106344
129	4,896	36	65
papers	citations	h-index	g-index
134	134	134	5299
all docs	docs citations	times ranked	citing authors

VINC XIA

#	Article	IF	CITATIONS
1	Hypoxic/Ischemic Inflammation, MicroRNAs and Î^-Opioid Receptors: Hypoxia/Ischemia-Sensitive Versus-Insensitive Organs. Frontiers in Aging Neuroscience, 2022, 14, .	3.4	3
2	Alleviation of TGFâ€Î²1 induced tubular epithelial–mesenchymal transition via the δâ€opioid receptor. FEBS Journal, 2021, 288, 1243-1258.	4.7	6
3	Activation of anterior thalamic reticular nucleus GABAergic neurons promotes arousal from propofol anesthesia in mice. Acta Biochimica Et Biophysica Sinica, 2021, 53, 883-892.	2.0	6
4	Hair Growth Promotion by δ-Opioid Receptor Activation. Biomolecules and Therapeutics, 2021, 29, 643-649.	2.4	3
5	GATA3 suppresses human fibroblasts-induced metastasis of clear cell renal cell carcinoma via an anti-IL6/STAT3 mechanism. Cancer Gene Therapy, 2020, 27, 726-738.	4.6	6
6	Mast Cell Degranulation and Adenosine Release:Acupoint Specificity for Effect of Electroacupuncture on Pituitrin-Induced Acute Heart Bradycardia in Rabbits. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-15.	1.2	4
7	Opposite Roles of δ- and μ-Opioid Receptors in BACE1 Regulation and Alzheimer's Injury. Frontiers in Cellular Neuroscience, 2020, 14, 88.	3.7	10
8	δ-Opioid Receptors, microRNAs, and Neuroinflammation in Cerebral Ischemia/Hypoxia. Frontiers in Immunology, 2020, 11, 421.	4.8	25
9	Î′-opioid receptor activation protects against Parkinson's disease-related mitochondrial dysfunction by enhancing PINK1/Parkin-dependent mitophagy. Aging, 2020, 12, 25035-25059.	3.1	9
10	Β-Opioid Receptor Activation Attenuates the Oligomer Formation Induced by Hypoxia and/or α-Synuclein Overexpression/Mutation Through Dual Signaling Pathways. Molecular Neurobiology, 2019, 56, 3463-3475.	4.0	22
11	Preservation Solutions for Kidney Transplantation: History, Advances and Mechanisms. Cell Transplantation, 2019, 28, 1472-1489.	2.5	39
12	Acupuncture Treatment for Pain: Clinical and Laboratory Research. , 2019, , 249-307.		0
13	Real-time analysis of ATP concentration in acupoints during acupuncture: a new technique combining microdialysis with patch clamp. Journal of Biological Engineering, 2019, 13, 93.	4.7	4
14	δ-Opioid Receptor-Nrf-2-Mediated Inhibition of Inflammatory Cytokines in Neonatal Hypoxic-Ischemic Encephalopathy. Molecular Neurobiology, 2019, 56, 5229-5240.	4.0	13
15	Î'-Opioid Receptor Activation Attenuates Hypoxia/MPP+-Induced Downregulation of PINK1: a Novel Mechanism of Neuroprotection Against Parkinsonian Injury. Molecular Neurobiology, 2019, 56, 252-266.	4.0	13
16	The δ-Opioid Receptor Differentially Regulates MAPKs and Anti-inflammatory Cytokines in Rat Kidney Epithelial Cells Under Hypoxia. Frontiers in Physiology, 2019, 10, 1572.	2.8	4
17	Factors Influencing Acupuncture Research. , 2019, , 421-483.		0
18	Critical roles of TRPV2 channels, histamine H1 and adenosine A1 receptors in the initiation of acupoint signals for acupuncture analgesia. Scientific Reports, 2018, 8, 6523.	3.3	62

#	Article	IF	CITATIONS
19	Major Differences in Hypoxia Tolerance and P38 Regulation Among Different Renal Cells. Cellular Physiology and Biochemistry, 2018, 46, 1483-1492.	1.6	1
20	Neuroprotection Against Hypoxic/Ischemic Injury: δ-Opioid Receptors and BDNF-TrkB Pathway. Cellular Physiology and Biochemistry, 2018, 47, 302-315.	1.6	37
21	Mast Cells and Nerve Signal Conduction in Acupuncture. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-9.	1.2	17
22	The deltaâ€opioid receptor and Parkinson's disease. CNS Neuroscience and Therapeutics, 2018, 24, 1089-1099.	3.9	16
23	Differences in Tfh Cell Response between the Graft and Spleen with Chronic Allograft Nephropathy. Cell Transplantation, 2017, 26, 95-102.	2.5	3
24	ERK and p38 Upregulation versus Bcl-6 Downregulation in Rat Kidney Epithelial Cells Exposed to Prolonged Hypoxia. Cell Transplantation, 2017, 26, 1441-1451.	2.5	7
25	Unmet challenges for rehabilitation after stroke in China. Lancet, The, 2017, 390, 121-122.	13.7	37
26	Characteristic MicroRNA Expression Induced by δ-Opioid Receptor Activation in the Rat Liver Under Prolonged Hypoxia. Cellular Physiology and Biochemistry, 2017, 44, 2296-2309.	1.6	36
27	TLR4 Signaling in MPP ⁺ -Induced Activation of BV-2 Cells. Neural Plasticity, 2016, 2016, 1-9.	2.2	32
28	Cytoprotection against Hypoxic and/or MPP+ Injury: Effect of δ–Opioid Receptor Activation on Caspase 3. International Journal of Molecular Sciences, 2016, 17, 1179.	4.1	16
29	Human behavioral assessments in current research of Parkinson's disease. Neuroscience and Biobehavioral Reviews, 2016, 68, 741-772.	6.1	58
30	Position Emission Tomography/Singleâ€Photon Emission Tomography Neuroimaging for Detection of Premotor Parkinson's Disease. CNS Neuroscience and Therapeutics, 2016, 22, 167-177.	3.9	18
31	Mitogen-Activated Protein Kinases and Hypoxic/Ischemic Nephropathy. Cellular Physiology and Biochemistry, 2016, 39, 1051-1067.	1.6	44
32	Animal behavioral assessments in current research of Parkinson's disease. Neuroscience and Biobehavioral Reviews, 2016, 65, 63-94.	6.1	63
33	microRNA-328 inhibits cervical cancer cell proliferation and tumorigenesis by targeting TCF7L2. Biochemical and Biophysical Research Communications, 2016, 475, 169-175.	2.1	39
34	Nur77 exacerbates PC12 cellular injury in vitro by aggravating mitochondrial impairment and endoplasmic reticulum stress. Scientific Reports, 2016, 6, 34403.	3.3	26
35	δ-Opioid Receptor Activation and MicroRNA Expression in the Rat Heart Under Prolonged Hypoxia. Cellular Physiology and Biochemistry, 2016, 39, 1118-1128.	1.6	25
36	Reversal effect of simvastatin on the decrease in cannabinoid receptor 1 density in 6-hydroxydopamine lesioned rat brains. Life Sciences, 2016, 155, 123-132.	4.3	9

YING XIA

#	Article	IF	CITATIONS
37	Attenuating Ischemic Disruption of K+ Homeostasis in the Cortex of Hypoxic-Ischemic Neonatal Rats: DOR Activation vs. Acupuncture Treatment. Molecular Neurobiology, 2016, 53, 7213-7227.	4.0	13
38	Contra-directional Coupling of Nur77 and Nurr1 in Neurodegeneration: A Novel Mechanism for Memantine-Induced Anti-inflammation and Anti-mitochondrial Impairment. Molecular Neurobiology, 2016, 53, 5876-5892.	4.0	72
39	Increased circulating follicular helper T cells with decreased programmed death-1 in chronic renal allograft rejection. BMC Nephrology, 2015, 16, 182.	1.8	36
40	Low Cerebral Glucose Metabolism: A Potential Predictor for the Severity of Vascular Parkinsonism and Parkinson's Disease. , 2015, 6, 426.		28
41	Lower Bone Mineral Density in Patients with Parkinson's Disease: A Cross-Sectional Study from Chinese Mainland. Frontiers in Aging Neuroscience, 2015, 7, 203.	3.4	24
42	Developmental Distribution of the \hat{I} -Opioid Receptor in Mammalian Brains. , 2015, , 89-115.		0
43	Are δ-Opioid Receptors Involved in Deep Brain Stimulation?. , 2015, , 521-581.		1
44	A novel mechanism for cytoprotection against hypoxic injury: Î'â€opioid receptorâ€mediated increase in <scp>N</scp> rf2 translocation. British Journal of Pharmacology, 2015, 172, 1869-1881.	5.4	34
45	Current Research on the δ-Opioid Receptor: From Neuroprotection Against Hypoxia/Ischemia to Broad Neural Functions. , 2015, , 1-44.		3
46	The Delta-Opioid System in the Brain: A Neglected Element in Parkinson's Disease?. , 2015, , 461-520.		2
47	Acupuncture, Opioid Receptors and Na+ Channels: A Novel Insight into Inhibition of Epileptic Hyperexcitability. , 2015, , 583-605.		5
48	Effects of Hypoxia and Ischemia on MicroRNAs in the Brain. Current Medicinal Chemistry, 2015, 22, 1292-1301.	2.4	15
49	Î-Opioid Receptor Induced Neuroprotection against Hypoxic/Ischemic Injury: Regulation of Ionic Homeostasis. Journal of Anesthesia and Perioperative Medicine, 2015, 2, 325-335.	0.2	2
50	Evolutionary Distribution of the \hat{I} -Opioid Receptor: From Invertebrates to Humans. , 2015, , 67-87.		1
51	The δ-Opioid Receptor and Stabilization of Brain Ionic Homeostasis in Hypoxia/Ischemia. , 2015, , 247-348.		1
52	The Role of δ-Opioid Receptors in Brain Ionic Homeostasis Under Physiological Condition. , 2015, , 117-246.		1
53	An Important Role of the δ-Opioid Receptor in Electroacupuncture-Induced Protection Against Ischemic Brain Injury. , 2015, , 409-435.		1
54	The Various Functions of Opioids in Pathophysiological Conditions. , 2015, , 631-685.		1

YING XIA

#	Article	IF	CITATIONS
55	The REST Gene Signature Predicts Drug Sensitivity in Neuroblastoma Cell Lines and Is Significantly Associated with Neuroblastoma Tumor Stage. International Journal of Molecular Sciences, 2014, 15, 11220-11233.	4.1	26
56	Deep Brain Stimulation: Are Astrocytes a Key Driver Behind the Scene?. CNS Neuroscience and Therapeutics, 2014, 20, 191-201.	3.9	67
57	Î'â€Opioid receptors upâ€regulate excitatory amino acid transporters in mouse astrocytes. British Journal of Pharmacology, 2014, 171, 5417-5430.	5.4	35
58	Hypoxia induces adipocyte differentiation of adiposeâ€derived stem cells by triggering reactive oxygen species generation. Cell Biology International, 2014, 38, 32-40.	3.0	51
59	δ-Opioid receptor activation reduces α-synuclein overexpression and oligomer formation induced by MPP+ and/or hypoxia. Experimental Neurology, 2014, 255, 127-136.	4.1	42
60	Non-pharmaceutical therapies for stroke: Mechanisms and clinical implications. Progress in Neurobiology, 2014, 115, 246-269.	5.7	73
61	MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2. Biochemical and Biophysical Research Communications, 2014, 447, 446-451.	2.1	43
62	δ-Opioid Receptors and Inflammatory Cytokines in Hypoxia: Differential Regulation Between Glial and Neuron-Like Cells. Translational Stroke Research, 2014, 5, 476-483.	4.2	27
63	Neuroprotection against hypoxia/ischemia: δ-opioid receptor-mediated cellular/molecular events. Cellular and Molecular Life Sciences, 2013, 70, 2291-2303.	5.4	77
64	Acupuncture Modulation of Neural Transmitters/Modulators. , 2013, , 1-36.		1
65	Acupuncture Treatment of Epilepsy. , 2013, , 129-214.		5
66	Acupuncture Treatment for Parkinson's Disease. , 2013, , 215-253.		3
67	Can Acupuncture Treat Alzheimer's Disease and Other Neurodegenerative Disorders?. , 2013, , 255-301.		1
68	Interference control in 6–11 yearâ€old children with and without ADHD: behavioral and ERP study. International Journal of Developmental Neuroscience, 2013, 31, 342-349.	1.6	23
69	Electroacupuncture-Induced Attenuation of Experimental Epilepsy: A Comparative Evaluation of Acupoints and Stimulation Parameters. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-10.	1.2	12
70	From Acupuncture to Interaction betweenl̂´-Opioid Receptors and Na+Channels: A Potential Pathway to Inhibit Epileptic Hyperexcitability. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-17.	1.2	14
71	Electroacupuncture and Brain Protection against Cerebral Ischemia: Specific Effects of Acupoints. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-14.	1.2	20
72	Effect of Electroacupuncture on Rat Ischemic Brain Injury: Importance of Stimulation Duration. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-12.	1.2	18

4

#	Article	IF	CITATIONS
73	Effect of δ-Opioid Receptor Activation on BDNF-TrkB vs. TNF-α in the Mouse Cortex Exposed to Prolonged Hypoxia. International Journal of Molecular Sciences, 2013, 14, 15959-15976.	4.1	34
74	δ-Opioid Receptor Activation Rescues the Functional TrkB Receptor and Protects the Brain from Ischemia-Reperfusion Injury in the Rat. PLoS ONE, 2013, 8, e69252.	2.5	38
75	Future Research in Acupuncture: Better Design and Analysis for Novel and Valid Findings. , 2013, , 687-725.		5
76	δ-Opioid Receptor Activation Modified MicroRNA Expression in the Rat Kidney under Prolonged Hypoxia. PLoS ONE, 2013, 8, e61080.	2.5	15
77	Hydrogen Sulfide Induced Disruption of Na+ Homeostasis in the Cortex. Toxicological Sciences, 2012, 128, 198-208.	3.1	15
78	Current Research on Opioid Receptor Function. Current Drug Targets, 2012, 13, 230-246.	2.1	254
79	Primary Involvement of NADPH Oxidase 4 in Hypoxia-Induced Generation of Reactive Oxygen Species in Adipose-Derived Stem Cells. Stem Cells and Development, 2012, 21, 2212-2221.	2.1	59
80	Neurotransmitter receptors and cognitive dysfunction in Alzheimer's disease and Parkinson's disease. Progress in Neurobiology, 2012, 97, 1-13.	5.7	235
81	δ-Opioid Receptor Activation and MicroRNA Expression of the Rat Cortex in Hypoxia. PLoS ONE, 2012, 7, e51524.	2.5	21
82	DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex. Experimental Neurology, 2012, 236, 228-239.	4.1	27
83	Electroacupuncture increased cerebral blood flow and reduced ischemic brain injury: dependence on stimulation intensity and frequency. Journal of Applied Physiology, 2011, 111, 1877-1887.	2.5	66
84	Effects of inhibitory amino acids on expression of GABAA Rα and glycine Rα1 in hypoxic rat cortical neurons during development. Brain Research, 2011, 1425, 1-12.	2.2	2
85	The Pivotal Role of Reactive Oxygen Species Generation in the Hypoxia-Induced Stimulation of Adipose-Derived Stem Cells. Stem Cells and Development, 2011, 20, 1753-1761.	2.1	83
86	Generation of reactive oxygen species in adipose-derived stem cells: friend or foe?. Expert Opinion on Therapeutic Targets, 2011, 15, 1297-1306.	3.4	43
87	Effect of Delta-Opioid Receptor Over-Expression on Cortical Expression of GABA(subscript A) Receptor α1-Subunit in Hypoxia. Chinese Journal of Physiology, 2011, 54, 118-123.	1.0	24
88	Acupuncture-Induced Activation of Endogenous Opioid System. , 2010, , 104-119.		14
89	Ionic storm in hypoxic/ischemic stress: Can opioid receptors subside it?. Progress in Neurobiology, 2010, 90, 439-470.	5.7	90

90 Effects of Acupuncture on Arrhythmia and Other Cardiac Diseases. , 2010, , 263-288.

6

YING XIA

#	Article	IF	CITATIONS
91	Acupuncture Therapy for Hypertension and Hypotension. , 2010, , 289-325.		4
92	Effect of Acupuncture on Neurotransmitters/Modulators. , 2010, , 120-142.		17
93	Acupuncture Therapy for Stroke. , 2010, , 226-262.		11
94	δ-Opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation. Cellular and Molecular Life Sciences, 2009, 66, 3505-3516.	5.4	41
95	δ-Opioid receptor activation attenuates oxidative injury in the ischemic rat brain. BMC Biology, 2009, 7, 55.	3.8	88
96	Hypoxiaâ€enhanced woundâ€healing function of adiposeâ€derived stem cells: Increase in stem cell proliferation and upâ€regulation of VEGF and bFGF. Wound Repair and Regeneration, 2009, 17, 540-547.	3.0	383
97	A novel insight into neuroprotection against hypoxic/ischemic stress. Acta Physiologica Sinica, 2009, 61, 585-92.	0.5	19
98	δ-opioid Receptor induced inhibition of sodium channel function. Journal of Acupuncture and Tuina Science, 2008, 6, 276-278.	0.3	0
99	Effect of electroacupuncture on experimental epilepsy: Roles of different acupoints and stimulation parameters. Journal of Acupuncture and Tuina Science, 2008, 6, 279-280.	0.3	2
100	Effects of continuous hypoxia on energy metabolism in cultured cerebro-cortical neurons. Brain Research, 2008, 1229, 147-154.	2.2	29
101	Activation of DOR Attenuates Anoxic K+ Derangement via Inhibition of Na+ Entry in Mouse Cortex. Cerebral Cortex, 2008, 18, 2217-2227.	2.9	53
102	Γ´-, but not µ-, opioid receptor stabilizes K+ homeostasis by reducing Ca2+ influx in the cortex during acute hypoxia. Journal of Cellular Physiology, 2007, 212, 60-67.	4.1	80
103	Cortical δ-Opioid Receptors Potentiate K+ Homeostasis During Anoxia and Oxygen–Glucose Deprivation. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 356-368.	4.3	60
104	Anisomycin protects cortical neurons from prolonged hypoxia with differential regulation of p38 and ERK. Brain Research, 2007, 1149, 76-86.	2.2	23
105	Rapid Hypoxia Preconditioning Protects Cortical Neurons From Glutamate Toxicity Through δ-Opioid Receptor. Stroke, 2006, 37, 1094-1099.	2.0	94
106	GABA and glycine are protective to mature but toxic to immature rat cortical neurons under hypoxia. European Journal of Neuroscience, 2005, 22, 289-300.	2.6	36
107	Oxygen-sensitive δ-Opioid Receptor-regulated Survival and Death Signals. Journal of Biological Chemistry, 2005, 280, 16208-16218.	3.4	156
108	Down-regulation of delta-opioid receptors in Na+/H+ exchanger 1 null mutant mouse brain with epilepsy. Neuroscience Research, 2005, 53, 442-446.	1.9	29

#	Article	IF	CITATIONS
109	Intermittent hypoxia modulates Na + channel expression in developing mouse brain. International Journal of Developmental Neuroscience, 2005, 23, 327-333.	1.6	15
110	Effect of protein kinases on lactate dehydrogenase activity in cortical neurons during hypoxia. Brain Research, 2004, 1009, 195-202.	2.2	24
111	Na+ Channel Expression and Neuronal Function in the Na+/H+ Exchanger 1 Null Mutant Mouse. Journal of Neurophysiology, 2003, 89, 229-236.	1.8	51
112	Neuroprotective role of δ-opioid receptors in cortical neurons. American Journal of Physiology - Cell Physiology, 2002, 282, C1225-C1234.	4.6	147
113	Major difference in the expression of ?- and ?-opioid receptors between turtle and rat brain. Journal of Comparative Neurology, 2001, 436, 202-210.	1.6	100
114	Major difference in the expression of δ―and μâ€opioid receptors between turtle and rat brain. Journal of Comparative Neurology, 2001, 436, 202-210.	1.6	1
115	Effect of respiratory muscle training on GLUT-4 in the sheep diaphragm. Medicine and Science in Sports and Exercise, 2000, 32, 1406-1411.	0.4	9
116	δ-, but not μ- and κ-, opioid receptor activation protects neocortical neurons from glutamate-induced excitotoxic injury. Brain Research, 2000, 885, 143-153.	2.2	151
117	Increased neuronal excitability after long-term O2 deprivation is mediated mainly by sodium channels. Molecular Brain Research, 2000, 76, 211-219.	2.3	34
118	Mechanisms underlying hypoxia-induced neuronal apoptosis. Progress in Neurobiology, 2000, 62, 215-249.	5.7	264
119	Effect of chronic hypoxia on glucose transporters in heart and skeletal muscle of immature and adult rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1734-R1741.	1.8	39
120	Chronic hypoxia causes opposite effects on glucose transporter 1 mRNA in mature versus immature rat brain. Brain Research, 1995, 675, 224-230.	2.2	27
121	Postnatal development of voltage sensitive Na+ channels in rat brain. Journal of Comparative Neurology, 1994, 345, 279-287.	1.6	35
122	Voltage-sensitive Na+ channels increase in number in newborn rat brain after in utero hypoxia. Brain Research, 1994, 635, 339-344.	2.2	16
123	Neuroanatomical distribution and binding properties of saxitoxin sites in the rat and turtle CNS. Journal of Comparative Neurology, 1993, 330, 363-380.	1.6	22
124	Sulfonylurea Receptor Expression in Rat Brain: Effect of Chronic Hypoxia during Development. Pediatric Research, 1993, 34, 634-641.	2.3	26
125	Ontogeny and distribution of opioid receptors in the rat brainstem. Brain Research, 1991, 549, 181-193.	2.2	155
126	Major differences in CNS sulfonylurea receptor distribution between the rat (newborn, adult) and turtle. Journal of Comparative Neurology, 1991, 314, 278-289.	1.6	60

#	Article	IF	CITATIONS
127	ROLES OF OPIOID PEPTIDES OF PAG IN ANALOGOUS ELECTRO-ACUPUNCTURE INHIBITION OF EXPERIMENTAL ARRHYTHMIA: ANALYZED BY SPECIFIC ANTISERA MICROINJECTION. Acupuncture and Electro-Therapeutics Research, 1986, 11, 191-198.	0.2	7
128	INHIBITORY EFFECT OF ANALOGOUS ELECTRO-ACUPUNCTURE ON EXPERIMENTAL ARRYTHMIA. Acupuncture and Electro-Therapeutics Research, 1985, 10, 13-34.	0.2	14
129	A Critical Role of Î'-Opioid Receptor in Anti-microglial Activation Under Stress. Frontiers in Aging Neuroscience, 0, 14, .	3.4	3