Karl F Macdorman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7704574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Meta-analysis of the Uncanny Valley's Independent and Dependent Variables. ACM Transactions on Human-Robot Interaction, 2022, 11, 1-33.	3.2	30
2	Creepy cats and strange high houses: Support for configural processing in testing predictions of nine uncanny valley theories. Journal of Vision, 2021, 21, 1.	0.1	24
3	Skin detection in video under uncontrolled illumination. Multimedia Tools and Applications, 2021, 80, 24319.	2.6	0
4	Parental Acceptance of Children's Storytelling Robots: A Projection of the Uncanny Valley of AI. Frontiers in Robotics and AI, 2021, 8, 579993.	2.0	15
5	Why Real Citizens Would Turn to Artificial Leaders. Digital Government Research and Practice (DGOV), 2021, 2, 1-24.	1.2	2
6	Creepy, but Persuasive: In a Virtual Consultation, Physician Bedside Manner, Rather than the Uncanny Valley, Predicts Adherence. Frontiers in Virtual Reality, 2021, 2, .	2.5	1
7	Parental Expectations, Concerns, and Acceptance of Storytelling Robots for Children. , 2020, , .		7
8	In the uncanny valley, transportation predicts narrative enjoyment more than empathy, but only for the tragic hero. Computers in Human Behavior, 2019, 94, 140-153.	5.1	23
9	La Vallée de l'Étrange de Mori Masahiro. E-PhaÃ⁻stos, 2019, , .	0.1	7
10	Review of constraints on visionâ€based gesture recognition for human–computer interaction. IET Computer Vision, 2018, 12, 3-15.	1.3	162
11	Generating Natural Motion in an Android by Mapping Human Motion. , 2018, , 57-73.		3
12	The doctor's digital double: how warmth, competence, and animation promote adherence intention. PeerJ Computer Science, 2018, 4, e168.	2.7	16
13	Categorization-based stranger avoidance does not explain the uncanny valley effect. Cognition, 2017, 161, 132-135.	1.1	21
14	Measuring the Uncanny Valley Effect. International Journal of Social Robotics, 2017, 9, 129-139.	3.1	123
15	Familiar faces rendered strange: Why inconsistent realism drives characters into the uncanny valley. Journal of Vision, 2016, 16, 7.	0.1	46
16	Reducing consistency in human realism increases the uncanny valley effect; increasing category uncertainty does not. Cognition, 2016, 146, 190-205.	1.1	148
17	Individual differences predict sensitivity to the uncanny valley. Interaction Studies, 2015, 16, 141-172.	0.4	117
18	Sending an Avatar to Do a Human's Job: Compliance with Authority Persists Despite the Uncanny Valley. Presence: Teleoperators and Virtual Environments, 2015, 24, 1-23.	0.3	13

KARL F MACDORMAN

#	Article	IF	CITATIONS
19	Hand pose recognition from monocular images by geometrical and texture analysis. Journal of Visual Languages and Computing, 2015, 28, 39-55.	1.8	15
20	A novel set of features for continuous hand gesture recognition. Journal on Multimodal User Interfaces, 2014, 8, 333-343.	2.0	57
21	Receptive to bad reception: Jerky motion can make persuasive messages more effective. Computers in Human Behavior, 2014, 32, 32-39.	5.1	4
22	The uncanny valley does not interfere with level 1 visual perspective taking. Computers in Human Behavior, 2013, 29, 1671-1685.	5.1	28
23	PAGED: a pathway and gene-set enrichment database to enable molecular phenotype discoveries. BMC Bioinformatics, 2012, 13, S2.	1.2	18
24	The Uncanny Valley [From the Field]. IEEE Robotics and Automation Magazine, 2012, 19, 98-100.	2.2	1,827
25	Toward Monitoring and Increasing Exercise Adherence in Older Adults by Robotic Intervention: A Proof of Concept Study. Journal of Robotics, 2011, 2011, 1-11.	0.6	36
26	Facilitators and Barriers to Adopting Robotic-Assisted Surgery: Contextualizing the Unified Theory of Acceptance and Use of Technology. PLoS ONE, 2011, 6, e16395.	1.1	113
27	A Mismatch in the Human Realism of Face and Voice Produces an Uncanny Valley. I-Perception, 2011, 2, 10-12.	0.8	151
28	Does social desirability bias favor humans? Explicit–implicit evaluations of synthesized speech support a new HCI model of impression management. Computers in Human Behavior, 2011, 27, 402-412.	5.1	48
29	An Improved Usability Measure Based on Novice and Expert Performance. International Journal of Human-Computer Interaction, 2011, 27, 280-302.	3.3	26
30	The Aesthetic Dimensions of U.S. and South Korean Responses to Web Home Pages: A Cross-Cultural Comparison. International Journal of Human-Computer Interaction, 2011, 27, 131-150.	3.3	14
31	Revisiting the uncanny valley theory: Developing and validating an alternative to the Godspeed indices. Computers in Human Behavior, 2010, 26, 1508-1518.	5.1	314
32	Gender Differences in the Impact of Presentational Factors in Human Character Animation on Decisions in Ethical Dilemmas. Presence: Teleoperators and Virtual Environments, 2010, 19, 213-229.	0.3	23
33	Too real for comfort? Uncanny responses to computer generated faces. Computers in Human Behavior, 2009, 25, 695-710.	5.1	377
34	Does Japan really have robot mania? Comparing attitudes by implicit and explicit measures. AI and Society, 2009, 23, 485-510.	3.1	220
35	Humanoid Robot Motion Recognition and Reproduction. Advanced Robotics, 2009, 23, 349-366.	1.1	14
36	Sensitivity to the proportions of faces that vary in human likeness. Computers in Human Behavior, 2008, 24, 2456-2474.	5.1	82

3

#	Article	IF	CITATIONS
37	THE INFLUENCE OF HOLISTIC AND ANALYTIC COGNITIVE STYLES ON ONLINE INFORMATION DESIGN: Toward a communication theory of cultural cognitive design. Information, Communication and Society, 2008, 11, 348-374.	2.6	12
38	Human emotion and the uncanny valley. , 2008, , .		96
39	Building the Mega-Collaboration Interface: Behavioral, Cultural, and Cognitive Factors in Visualization Support. , 2008, , .		0
40	Dynamics of Co-Transcriptional Pre-mRNA Folding Influences the Induction of Dystrophin Exon Skipping by Antisense Oligonucleotides. PLoS ONE, 2008, 3, e1844.	1.1	33
41	Automatic Emotion Prediction of Song Excerpts: Index Construction, Algorithm Design, and Empirical Comparison. Journal of New Music Research, 2007, 36, 281-299.	0.6	38
42	Afterword: Life after the symbol system metaphor. Interaction Studies, 2007, 8, 143-158.	0.4	13
43	Introduction to the Special Issue on Psychological Benchmarks of Human–Robot Interaction. Interaction Studies, 2007, 8, 359-362.	0.4	6
44	The uncanny valley of eeriness. , 2007, , .		2
45	Memory-Based Attention Control for Activity Recognition at a Subway Station. IEEE MultiMedia, 2007, 14, 38-49.	1.5	24
46	Long-term relationships as a benchmark for robot personhood. , 2006, , .		25
47	What baboons, babies and Tetris players tell us about interaction: a biosocial view of norm-based social learning. Connection Science, 2006, 18, 363-378.	1.8	20
48	The uncanny advantage of using androids in cognitive and social science research. Interaction Studies, 2006, 7, 297-337.	0.4	445
49	Toward social mechanisms of android science. Interaction Studies, 2006, 7, 289-296.	0.4	14
50	Opening Pandora's uncanny Box. Interaction Studies, 2006, 7, 361-368.	0.4	26
51	Introduction to the special issue on android science. Connection Science, 2006, 18, 313-317.	1.8	8
52	Generating natural motion in an android by mapping human motion. , 2005, , .		99
53	Inverse kinematics learning for robotic arms with fewer degrees of freedom by modular neural network systems. , 2005, , .		36
54	An Algorithm That Recognizes and Reproduces Distinct Types of Humanoid Motion Based on Periodically-Constrained Nonlinear PCA. Lecture Notes in Computer Science, 2005, , 370-380.	1.0	3

Karl F Macdorman

#	Article	IF	CITATIONS
55	Periodic nonlinear principal component neural networks for humanoid motion segmentation, generalization, and generation. , 2004, , .		10
56	On the use of forward kinematic models in visually guided hand position control—analysis based on ISLES model. Neurocomputing, 2002, 44-46, 965-972.	3.5	4
57	Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Robotics and Autonomous Systems, 2001, 37, 185-193.	3.0	342
58	A modular neural network architecture for inverse kinematics model learning. Neurocomputing, 2001, 38-40, 797-805.	3.5	41
59	Coordinate transformation learning of hand position feedback controller with time delay. Neurocomputing, 2001, 38-40, 1503-1509.	3.5	4
60	Cognitive Robotics. Grounding symbols through sensorimotor integration Journal of the Robotics Society of Japan, 1999, 17, 20-24.	0.0	30
61	Feature learning, multiresolution analysis, and symbol grounding. Behavioral and Brain Sciences, 1998, 21, 32-32.	0.4	8
62	Memory must also mesh affect. Behavioral and Brain Sciences, 1997, 20, 29-30.	0.4	2
63	Simulating conversations: The communion game. Al and Society, 1995, 9, 116-137.	3.1	16
64	An account of consciousness in physical and functional terms: A target for research in the neurosciences. Integrative Psychological and Behavioral Science, 1994, 29, 151-181.	0.3	6
65	Automatic extraction of abstract actions from humanoid motion data. , 0, , .		1
66	Precise planar positioning using visual servoing based on coarse optical flow. , 0, , .		4
67	Responding to affordances: learning and projecting a sensorimotor mapping. , 0, , .		10
68	Proto-symbol emergence. , 0, , .		7
69	Protosymbol emergence based on embodiment: robot experiments. , 0, , .		2
70	Learning a coordinate transformation for a human visual feedback controller based on disturbance noise and the feedback error signal. , 0, , .		7
71	A new model of the visual feedback coordinate transformation in humans based on disturbance noise and feedback error that accounts for time delays. , 0, , .		0
72	Mortality salience and the uncanny valley. , 0, , .		28