Taek Dong Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7704295/publications.pdf

Version: 2024-02-01

147 papers 8,402 citations

42 h-index 89 g-index

158 all docs

158 docs citations

158 times ranked 11674 citing authors

#	Article	IF	CITATIONS
1	A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnology, 2016, 11, 566-572.	15.6	1,394
2	Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 2006, 556, 46-57.	2.6	1,018
3	Recent advances in electrochemical non-enzymatic glucose sensors – A review. Analytica Chimica Acta, 2018, 1033, 1-34.	2.6	574
4	Nonenzymatic Glucose Detection Using Mesoporous Platinum. Analytical Chemistry, 2003, 75, 3046-3049.	3.2	562
5	Mussel-Inspired Encapsulation and Functionalization of Individual Yeast Cells. Journal of the American Chemical Society, 2011, 133, 2795-2797.	6.6	378
6	Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochimica Acta, 2012, 59, 509-514.	2.6	199
7	Iontronics. Annual Review of Analytical Chemistry, 2015, 8, 441-462.	2.8	159
8	Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis. Physical Chemistry Chemical Physics, 2012, 14, 448-463.	1.3	157
9	Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B, 2013, 1, 933.	2.9	144
10	Ionic Strength-Controlled Virtual Area of Mesoporous Platinum Electrode. Journal of the American Chemical Society, 2004, 126, 4524-4525.	6.6	129
11	Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis, 2007, 28, 4511-4520.	1.3	128
12	Ionic Circuits Based on Polyelectrolyte Diodes on a Microchip. Angewandte Chemie - International Edition, 2009, 48, 3830-3833.	7.2	121
13	Electrochemical analysis based on nanoporous structures. Analyst, The, 2012, 137, 3891.	1.7	106
14	Electrochemical Nanoneedle Biosensor Based on Multiwall Carbon Nanotube. Analytical Chemistry, 2006, 78, 617-620.	3.2	105
15	Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt. Biosensors and Bioelectronics, 2012, 31, 284-291.	5.3	81
16	Lightâ€Driven Highly Selective Conversion of CO ₂ to Formate by Electrosynthesized Enzyme/Cofactor Thin Film Electrode. Advanced Energy Materials, 2016, 6, 1502207.	10.2	79
17	Continuous Low-Voltage dc Electroporation on a Microfluidic Chip with Polyelectrolytic Salt Bridges. Analytical Chemistry, 2007, 79, 7761-7766.	3.2	76
18	High Yield Sample Preconcentration Using a Highly Ion-Conductive Charge-Selective Polymer. Analytical Chemistry, 2010, 82, 6287-6292.	3.2	76

#	Article	IF	CITATIONS
19	Effect of Nanoporous Structure on Enhanced Electrochemical Reaction. Journal of Physical Chemistry C, 2010, 114, 9546-9553.	1.5	75
20	Cytometry and Velocimetry on a Microfluidic Chip Using Polyelectrolytic Salt Bridges. Analytical Chemistry, 2005, 77, 2490-2495.	3.2	73
21	Surface-Enhanced Raman Scattering of 4-Cyanobiphenyl on Gold and Silver Nanoparticle Surfaces. Langmuir, 2002, 18, 8813-8816.	1.6	70
22	Glucose sensor using a microfabricated electrode and electropolymerized bilayer films. Biosensors and Bioelectronics, 2002, 17, 251-259.	5. 3	69
23	Nanoporous Pt Microelectrode for Neural Stimulation and Recording: In Vitro Characterization. Journal of Physical Chemistry C, 2010, 114, 8721-8726.	1.5	65
24	Microfluidic approaches for gene delivery and gene therapy. Lab on A Chip, 2011, 11, 3941.	3.1	64
25	Structural and electrochemical features of 3D nanoporous platinum electrodes. Electrochimica Acta, 2010, 55, 2029-2035.	2.6	63
26	Full-Color-Tunable Nanophotonic Device Using Electrochromic Tungsten Trioxide Thin Film. Nano Letters, 2020, 20, 6084-6090.	4. 5	63
27	A label-free DC impedance-based microcytometer for circulating rare cancer cell counting. Lab on A Chip, 2013, 13, 970.	3.1	61
28	Tunable Decoration of Reduced Graphene Oxide with Au Nanoparticles for the Oxygen Reduction Reaction. Advanced Functional Materials, 2014, 24, 2764-2771.	7.8	61
29	pH-Sensitive Solid-State Electrode Based on Electrodeposited Nanoporous Platinum. Analytical Chemistry, 2005, 77, 7695-7701.	3.2	59
30	Electrochemical Monitoring of Proton Transfer across Liquid/Liquid Interfaces on the Surface of Graphite Electrodes. Analytical Chemistry, 2001, 73, 337-342.	3.2	58
31	A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence. Biosensors and Bioelectronics, 2010, 25, 1509-1515.	5.3	55
32	Hydrogen-atom-mediated electrochemistry. Nature Communications, 2013, 4, 2766.	5. 8	54
33	Monolayer Graphene-Directed Growth and Neuronal Differentiation of Mesenchymal Stem Cells. Journal of Biomedical Nanotechnology, 2015, 11, 2024-2033.	0.5	54
34	A new organic modifier for anti-stiction. Journal of Microelectromechanical Systems, 2001, 10, 33-40.	1.7	52
35	A Stretchable Ionic Diode from Copolyelectrolyte Hydrogels with Methacrylated Polysaccharides. Advanced Functional Materials, 2019, 29, 1806909.	7.8	52
36	Integration of a Nanoporous Platinum Thin Film into a Microfluidic System for Non-enzymatic Electrochemical Glucose Sensing. Analytical Sciences, 2007, 23, 277-281.	0.8	51

#	Article	IF	CITATIONS
37	Enhanced electrocatalysis of PtRu onto graphene separated by Vulcan carbon spacer. Journal of Power Sources, 2013, 222, 261-266.	4.0	51
38	Three-Dimensional Interstitial Nanovoid of Nanoparticulate Pt Film Electroplated from Reverse Micelle Solution. Chemistry of Materials, 2007, 19, 3373-3375.	3.2	48
39	Nanoporous platinum thin films synthesized by electrochemical dealloying for nonenzymatic glucose detection. Physical Chemistry Chemical Physics, 2013, 15, 5782.	1.3	48
40	Nanoconfinement effects in electrochemical reactions. Current Opinion in Electrochemistry, 2019, 13, 47-54.	2.5	48
41	Self-Assembled Monolayer of a Redox-Active Calix[4]arene:Â Voltammetric Recognition of the Ba2+lon in Aqueous Media. Analytical Chemistry, 2001, 73, 3975-3980.	3.2	46
42	Ion-to-ion amplification through an open-junction ionic diode. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13807-13815.	3.3	46
43	Disposable non-enzymatic blood glucose sensing strip based on nanoporous platinum particles. Applied Materials Today, 2018, 10, 24-29.	2.3	44
44	Electrochemical oxidation of hydrogen peroxide at nanoporous platinum electrodes and the application to glutamate microsensor. Electrochimica Acta, 2006, 52, 1788-1791.	2.6	43
45	Nanoporous platinum solid-state reference electrode with layer-by-layer polyelectrolyte junction for pH sensing chip. Lab on A Chip, 2011, 11, 664-671.	3.1	42
46	Universal Suzuki–Miyaura Catalyst-Transfer Polymerization for Precision Synthesis of Strong Donor/Acceptor-Based Conjugated Polymers and Their Sequence Engineering. Journal of the American Chemical Society, 2021, 143, 11180-11190.	6.6	40
47	Single Gold Microshell Tailored to Sensitive Surface Enhanced Raman Scattering Probe. Analytical Chemistry, 2010, 82, 447-451.	3.2	39
48	Electrochemical Signal Amplification for Immunosensor Based on 3D Interdigitated Array Electrodes. Analytical Chemistry, 2014, 86, 5991-5998.	3.2	36
49	Electrochemical codeposition of Pt/graphene catalyst for improved methanol oxidation. Current Applied Physics, 2015, 15, 219-225.	1.1	35
50	Ultrafast active mixer using polyelectrolytic ion extractor. Lab on A Chip, 2008, 8, 764.	3.1	34
51	Ion Flow Crossing Over a Polyelectrolyte Diode on a Microfluidic Chip. Small, 2011, 7, 2629-2639.	5.2	34
52	Totally implantable enzymatic biofuel cell and brain stimulator operating in bird through wireless communication. Biosensors and Bioelectronics, 2021, 171, 112746.	5.3	34
53	Polyelectrolyte junction field effect transistor based on microfluidic chip. Applied Physics Letters, 2010, 96, .	1.5	32
54	A miniaturized electrochemical system with a novel polyelectrolyte reference electrode and its application to thin layer electroanalysis. Sensors and Actuators B: Chemical, 2006, 115, 212-219.	4.0	31

#	Article	IF	CITATIONS
55	Effects of adsorption and confinement on nanoporous electrochemistry. Faraday Discussions, 2013, 164, 361.	1.6	31
56	Miniaturized Reverse Electrodialysis-Powered Biosensor Using Electrochemiluminescence on Bipolar Electrode. Analytical Chemistry, 2018, 90, 4749-4755.	3.2	31
57	Reproducible fabrication of miniaturized glucose sensors: preparation of sensing membranes for continuous monitoring. Biosensors and Bioelectronics, 2001, 16, 1079-1087.	5.3	30
58	The Electrochemical Reaction Mechanism and Applications of Quinones. Bulletin of the Korean Chemical Society, 2014, 35, 3143-3155.	1.0	29
59	Dynamic Preconcentration of Gold Nanoparticles for Surfaceâ€Enhanced Raman Scattering in a Microfluidic System. Small, 2012, 8, 378-383.	5.2	26
60	A flow cytometry-based submicron-sized bacterial detection system using a movable virtual wall. Lab on A Chip, 2014, 14, 2327.	3.1	26
61	Densely charged polyelectrolyte-stuffed nanochannel arrays for power generation from salinity gradient. Scientific Reports, 2016, 6, 26416.	1.6	26
62	Nanoengineered micro gold shells for LDI-TOF analysis of small molecules. Analytica Chimica Acta, 2012, 736, 1-6.	2.6	25
63	Light-guided electrodeposition of non-noble catalyst patterns for photoelectrochemical hydrogen evolution. Energy and Environmental Science, 2015, 8, 3654-3662.	15.6	25
64	Highâ€Speed Transmission Control in Gateâ€Tunable Metasurfaces Using Hybrid Plasmonic Waveguide Mode. Advanced Optical Materials, 2020, 8, 2001256.	3.6	25
65	In vivo calibration of the subcutaneous amperometric glucose sensors using a non-enzyme electrode. Biosensors and Bioelectronics, 2003, 19, 313-319.	5.3	23
66	Multiplex immunoassays using virus-tethered gold microspheres by DC impedance-based flow cytometry. Biosensors and Bioelectronics, 2018, 102, 121-128.	5.3	23
67	Electrochemical recognition of Ca2+ ion in basic aqueous media using quinone-derivatized calix[4] arene. Electrochimica Acta, 2000, 45, 2939-2943.	2.6	22
68	Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes. Electrophoresis, 2009, 30, 1464-1469.	1.3	22
69	Surface Enhanced Raman Scattering on Nonâ€SERS Active Substrates and In Situ Electrochemical Study based on a Single Gold Microshell. Advanced Materials, 2013, 25, 2056-2061.	11.1	22
70	Paper-based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout. Biosensors and Bioelectronics, 2022, 203, 114002.	5.3	21
71	Thermal characteristics of interpenetrating polymer networks composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). Journal of Applied Polymer Science, 2003, 90, 881-885.	1.3	20
72	In-Channel Electrochemical Detection in the Middle of Microchannel under High Electric Field. Analytical Chemistry, 2012, 84, 901-907.	3.2	20

#	Article	IF	CITATIONS
73	Robust and High Spatial Resolution Light Addressable Electrochemistry Using Hematite (l±-Fe ₂ O ₃) Photoanodes. ACS Applied Materials & Diterfaces, 2018, 10, 33662-33668.	4.0	20
74	A rapid field-free electroosmotic micropump incorporating charged microchannel surfaces. Sensors and Actuators B: Chemical, 2007, 123, 1161-1168.	4.0	19
75	Ion bridges in microfluidic systems. Microfluidics and Nanofluidics, 2009, 6, 315-331.	1.0	19
76	In situ Confocal Microscopy of Electrochemical Generation and Collision of Emulsion Droplets in Bromide Redox System. Electrochimica Acta, 2017, 252, 164-170.	2.6	19
77	SERS decoding of micro gold shells moving in microfluidic systems. Electrophoresis, 2010, 31, 1623-1629.	1.3	18
78	Enhanced electrochemical reactions of 1,4-benzoquinone at nanoporous electrodes. Physical Chemistry Chemical Physics, 2013, 15, 10645.	1.3	18
79	Modulation of Quinone PCET Reaction by Ca ²⁺ Ion Captured by Calix[4]quinone in Water. Journal of the American Chemical Society, 2013, 135, 18957-18967.	6.6	18
80	Nanoporous ITO implemented bipolar electrode sensor for enhanced electrochemiluminescence. Electrochimica Acta, 2019, 314, 89-95.	2.6	18
81	Apparent electrocatalysis on 3D nanoporous platinum film electroplated from hexagonal lyotropic liquid crystalline phase of Triton X-100. Electrochimica Acta, 2008, 53, 6143-6148.	2.6	17
82	Electrochemical detection of neurotransmitters: Toward synapse-based neural interfaces. Biomedical Engineering Letters, 2016, 6, 123-133.	2.1	17
83	A miniaturized solid salt reverse electrodialysis battery: a durable and fully ionic power source. Chemical Science, 2018, 9, 8071-8076.	3.7	16
84	Catalytic Electron Transfer at Nanoporous Indium Tin Oxide Electrodes. Electrochimica Acta, 2017, 258, 90-97.	2.6	15
85	Real-Space Investigation of Electrical Double Layers. Potential Gradient Measurement with a Nanometer Potential Probe. Journal of Physical Chemistry C, 2011, 115, 17384-17391.	1.5	14
86	Electrodeless Reverse Electrodialysis Patches as an Ionic Power Source for Active Transdermal Drug Delivery. Advanced Functional Materials, 2018, 28, 1705952.	7.8	14
87	Selective electrochemical recognition of ions in solution and at self-assembled monolayers. Microchemical Journal, 2001, 68, 109-113.	2.3	13
88	Properties of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). Journal of Applied Polymer Science, 2003, 89, 2041-2045.	1.3	13
89	Virusâ€Tethered Magnetic Gold Microspheres with Biomimetic Architectures for Enhanced Immunoassays. Advanced Functional Materials, 2013, 23, 1484-1489.	7.8	13
90	Surface coverage and size effects on electrochemical oxidation of uniform gold nanoparticles. Electrochemistry Communications, 2015, 53, 11-14.	2.3	13

#	Article	IF	Citations
91	Photoelectrochemical and Impedance Spectroscopic Analysis of Amorphous Si for Light-Guided Electrodeposition and Hydrogen Evolution Reaction. ACS Applied Materials & (2017, 9, 23698-23706.	4.0	13
92	Hydrogel-Based Iontronics on a Polydimethylsiloxane Microchip. ACS Applied Materials & Eamp; Interfaces, 2021, 13, 6606-6614.	4.0	13
93	Glucose Sensor Based on Glucose Oxidase Immobilized by Zirconium Phosphate. Analytical Sciences, 2004, 20, 1635-1638.	0.8	12
94	Structure-Selective Recognition by Voltammetry:  Enantiomeric Determination of Amines Using Azophenolic Crowns in Aprotic Solvent. Analytical Chemistry, 2006, 78, 7597-7600.	3.2	12
95	Synthesis and Electrochemical Behavior of a New Water Soluble Ca2+-selective Ionophore Based on Calix[4]arene-triacid-monoquinone. Chemistry Letters, 1998, 27, 1225-1226.	0.7	11
96	Arrayed hybrid nanoporous Pt pillars. Electrochemistry Communications, 2009, 11, 2225-2228.	2.3	11
97	Three-dimensionally patterned Ag–Pt alloy catalyst on planar Si photocathodes for photoelectrochemical H ₂ evolution. Physical Chemistry Chemical Physics, 2019, 21, 4184-4192.	1.3	11
98	Current Amplification and Ultrafast Charge Transport in a Single Microdroplet of Bromide/Polybromide-Based Ionic Liquid. ACS Applied Energy Materials, 2020, 3, 5285-5292.	2.5	11
99	A Unified Synthetic Strategy to Introduce Heteroatoms via Electrochemical Functionalization of Alkyl Organoboron Reagents. Journal of the American Chemical Society, 2022, 144, 9149-9160.	6.6	11
100	Conductometric discrimination of electro-inactive metal ions using nanoporous electrodes. Electrochimica Acta, 2011, 56, 1947-1954.	2.6	10
101	Electrokinetic concentration on a microfluidic chip using polyelectrolytic gel plugs for small molecule immunoassay. Electrochimica Acta, 2013, 110, 164-171.	2.6	10
102	Quinone electrochemistry altered by local hydrophobic environment and hydrogen bonding interactions. Electrochemistry Communications, 2014, 41, 39-43.	2.3	10
103	Nonfaradaic Nanoporous Electrochemistry for Conductometry at High Electrolyte Concentration. Analytical Chemistry, 2015, 87, 2443-2451.	3.2	9
104	Confined Molecular Dynamics for Suppressing Kinetic Loss in Sugar Fuel Cell. Electrochimica Acta, 2016, 187, 457-464.	2.6	9
105	Sensitivity-Tunable and Disposable Ion-Sensing Platform Based on Reverse Electrodialysis. Analytical Chemistry, 2020, 92, 8776-8783.	3.2	9
106	Inverted Ion Current Rectification-Based Chemical Delivery Probes for Stimulation of Neurons. ACS Applied Materials & Delivery Probes for Stimulation of Neurons. ACS Applied Materials & Delivery Probes for Stimulation of Neurons. ACS Applied Materials & Delivery Probes for Stimulation of Neurons. ACS Applied Materials & Delivery Probes for Stimulation of Neurons. ACS Applied Materials & Delivery Probes for Stimulation of Neurons. ACS Applied Materials & Delivery Probes for Stimulation of Neurons. ACS Applied Materials & Delivery Probes for Stimulation of Neurons. ACS Applied Materials & Delivery Probes for Stimulation of Neurons. ACS Applied Materials & Delivery Probes for Stimulation of Neurons. ACS Applied Materials & Delivery Probes for Stimulation of Neurons.	4.0	9
107	Synthesis and Electrochemical Properties of Calix[4]arene-triester-monoquinones. Supramolecular Chemistry, 1998, 9, 221-229.	1.5	8
108	Selective and Direct Immobilization of Cysteinyl Biomolecules by Electrochemical Cleavage of Azo Linkage. Langmuir, 2010, 26, 15087-15091.	1.6	8

#	Article	IF	CITATIONS
109	3D interdigitated electrode array in the microchannel free of reference and counter electrodes. Biosensors and Bioelectronics, 2018, 101, 317-321.	5.3	8
110	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1998, 31, 119-129.	1.6	7
111	Mesoporous Platinum Electrodes for Amperometric Determination of Sugars with Anion Exchange Chromatography. Analytical Sciences, 2010, 26, 995-1000.	0.8	7
112	Reverse Electrodialysis-Assisted Solar Water Splitting. Scientific Reports, 2017, 7, 12281.	1.6	7
113	Revisiting Thin-Layer Electrochemistry in a Chip-Type Cell for the Study of Electro-organic Reactions. Analytical Chemistry, 2022, 94, 1248-1255.	3.2	7
114	In vitro and Short-term in vivo Characteristics of a Kel-F Thin Film Modified Glucose Sensor. Analytical Sciences, 2003, 19, 1481-1486.	0.8	6
115	Potentiometric Response of a Neutral-carrier-based Membrane to Aqueous Mercury in Clrich Media. Analytical Sciences, 2009, 25, 567-570.	0.8	6
116	Robust Type-specific Hemisynapses Induced by Artificial Dendrites. Scientific Reports, 2016, 6, 24210.	1.6	6
117	Conduction through a SiO2 layer studied by electrochemical impedance analysis. Electrochemistry Communications, 2017, 76, 75-78.	2.3	6
118	Unique Luminescence of Hexagonal Dominant Colloidal Copper Indium Sulphide Quantum Dots in Dispersed Solutions. Scientific Reports, 2019, 9, 20144.	1.6	6
119	In Situ Real-Time Monitoring of ITO Film under a Chemical Etching Process Using Fourier Transform Electrochemical Impedance Spectroscopy. Analytical Chemistry, 2020, 92, 10504-10511.	3.2	6
120	Understanding the role of nickel–iron (oxy)hydroxide (NiFeOOH) electrocatalysts on hematite photoanodes. Sustainable Energy and Fuels, 2021, 5, 501-508.	2.5	6
121	Bioaerosol monitoring by integrating DC impedance microfluidic cytometer with wet-cyclone air sampler. Biosensors and Bioelectronics, 2021, 192, 113499.	5.3	6
122	Cathodic electroorganic reaction on silicon oxide dielectric electrode. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32939-32946.	3.3	6
123	Calcium Ionâ^'Calixquinone Complexes Adsorbed on a Silver Electrode. Journal of Physical Chemistry C, 2009, 113, 19981-19985.	1.5	5
124	Gold Microshell Tip for In Situ Electrochemical Raman Spectroscopy. Advanced Materials, 2012, 24, 421-424.	11,1	4
125	Simultaneous Detection of SERS and Fluorescence Using a Single Excitation for Microbead-Based Analysis. Journal of Biomedical Nanotechnology, 2013, 9, 1241-1244.	0.5	4
126	Chemically Deposited Cobaltâ€Based Oxygenâ€Evolution Electrocatalysts on DOPAâ€Displaying Viruses. ChemCatChem, 2018, 10, 165-169.	1.8	4

#	Article	IF	CITATIONS
127	Aqueous ionic effect on electrochemical breakdown of Si-dielectric–electrolyte interface. Scientific Reports, 2020, 10, 16795.	1.6	4
128	Selective Enhancement of Electrochemical Signal Based on the Size of Alcohols Using Nanoporous Platinum. ChemElectroChem, 2021, 8, 2407-2412.	1.7	4
129	Functional Integration of Catalysts with Si Nanowire Photocathodes for Efficient Utilization of Photogenerated Charge Carriers. ACS Omega, 2021, 6, 22311-22316.	1.6	4
130	Adopting Back Reduction Current as an Additional Output Signal for Achieving Photoelectrochemical Differentiated Detection. Analytical Chemistry, 2022, 94, 2063-2071.	3.2	4
131	Dielectric Breakdown and Post-Breakdown Dissolution of Si/SiO2 Cathodes in Acidic Aqueous Electrochemical Environment. Scientific Reports, 2018, 8, 1911.	1.6	3
132	Robust Induced Presynapse on Artificial Substrates as a Neural Interfacing Method. ACS Applied Materials & Samp; Interfaces, 2019, 11, 7764-7773.	4.0	3
133	Ultra Compact Nanoporous Platinum Coating Improves Neural Recording. Electroanalysis, 2021, 33, 839-844.	1.5	3
134	Neuroligin-1-Modified Electrodes for Specific Coupling with a Presynaptic Neuronal Membrane. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21944-21953.	4.0	3
135	Grand-canonical Monte Carlo simulation study of polyelectrolyte diode. , 2012, , .		2
136	Electrochemical Impedance Spectroscopy at Wellâ€Controlled dc Bias for Nanoporous Platinum Microelectrodes in Rat Embryo Brain. ChemElectroChem, 2016, 3, 2189-2195.	1.7	2
137	Translocation Pathwayâ€Dependent Assembly of Streptavidin―and Antibodyâ€Binding Filamentous Virusâ€Like Particles. Small, 2017, 13, 1601693.	5.2	2
138	Electrochemistry of the Silicon Oxide Dielectric Layer: Principles, Electrochemical Reactions, and Perspectives. Chemistry - an Asian Journal, 2021, 16, 3014-3025.	1.7	2
139	Enhanced H ₂ Evolution at Patterned MoS _{<i>x</i>} -Modified Si-Based Photocathodes by Incorporating the Interfacial 3D Nanostructure of Ag. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 46499-46506.	4.0	2
140	Reverse electrodialysis for emerging applications. Bulletin of the Korean Chemical Society, 0, , .	1.0	2
141	Recent advances in electroanalytical methods for electroorganic synthesis. Current Opinion in Electrochemistry, 2022, 35, 101054.	2.5	2
142	Heterogeneous electron transfer reorganization energy at the inner Helmholtz plane in a polybromide redox-active ionic liquid. Chemical Science, 2022, 13, 8821-8828.	3.7	2
143	Graphene: Tunable Decoration of Reduced Graphene Oxide with Au Nanoparticles for the Oxygen Reduction Reaction (Adv. Funct. Mater. 19/2014). Advanced Functional Materials, 2014, 24, 2738-2738.	7.8	1
144	Direct electrodeposition of various metal nanocrystals on silicon oxide dielectric layer and insights into electrochemical behavior. Bulletin of the Korean Chemical Society, 2022, 43, 227-231.	1.0	1

#	Article	IF	CITATIONS
145	Electrochemical Recognition of Ions with Self-Assembled Monolayers of Quinone Derivatized Calixarene Disulfide. Studies in Surface Science and Catalysis, 2001, 132, 967-972.	1.5	O
146	Drug Delivery: Electrodeless Reverse Electrodialysis Patches as an Ionic Power Source for Active Transdermal Drug Delivery (Adv. Funct. Mater. 15/2018). Advanced Functional Materials, 2018, 28, 1870100.	7.8	0
147	Preparation of Electrochemically Stable and SERS Active Silica@Gold Microshell. Journal of the Korean Electrochemical Society, 2013, 16, 46-51.	0.1	0