Daniel Pomp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/770418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Socio-Economic and Psychological Determinants for Household Water Treatment Practices in Indigenous–Rural Indonesia. Frontiers in Water, 2021, 3, .	2.3	12
2	Systems genetics in diversity outbred mice inform BMD GWAS and identify determinants of bone strength. Nature Communications, 2021, 12, 3408.	12.8	31
3	Genetic architecture modulates diet-induced hepatic mRNA and miRNA expression profiles in Diversity Outbred mice. Genetics, 2021, 218, .	2.9	4
4	Genetic Basis of Aerobically Supported Voluntary Exercise: Results from a Selection Experiment with House Mice. Genetics, 2020, 216, 781-804.	2.9	15
5	Genetic Architecture Modulates Diet-Induced Hepatic mRNA and miRNA Expression Profiles in Diversity Outbred Mice. Genetics, 2020, 216, 241-259.	2.9	6
6	Facial shape and allometry quantitative trait locus intervals in the Diversity Outbred mouse are enriched for known skeletal and facial development genes. PLoS ONE, 2020, 15, e0233377.	2.5	19
7	microRNA-146a-5p association with the cardiometabolic disease risk factor TMAO. Physiological Genomics, 2019, 51, 59-71.	2.3	20
8	Quantitative trait mapping in Diversity Outbred mice identifies two genomic regions associated with heart size. Mammalian Genome, 2018, 29, 80-89.	2.2	27
9	Biological/Genetic Regulation of Physical Activity Level. Medicine and Science in Sports and Exercise, 2018, 50, 863-873.	0.4	80
10	Improving Metabolic Health Through Precision Dietetics in Mice. Genetics, 2018, 208, 399-417.	2.9	44
11	Developmental constraint through negative pleiotropy in the zygomatic arch. EvoDevo, 2018, 9, 3.	3.2	6
12	CC002/Unc females are mouse models of exercise-induced paradoxical fat response. Physiological Reports, 2018, 6, e13716.	1.7	9
13	Prevention of tumorigenesis in mice by exercise is dependent on strain background and timing relative to carcinogen exposure. Scientific Reports, 2017, 7, 43086.	3.3	10
14	Systems genetics identifies a co-regulated module of liver microRNAs associated with plasma LDL cholesterol in murine diet-induced dyslipidemia. Physiological Genomics, 2017, 49, 618-629.	2.3	13
15	Aerobic exercise prevents rarefaction of pial collaterals and increased stroke severity that occur with aging. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3544-3555.	4.3	35
16	Abstract 222: Exercise Training Prevents Rarefaction of Pial Collaterals, Promotes Cerebral Arterial Remodeling, and Lessens Severity of Stroke in Aging Brain. Stroke, 2017, 48, .	2.0	0
17	Longâ€ŧerm exercise in mice has sexâ€dependent benefits on body composition and metabolism during aging. Physiological Reports, 2016, 4, e13011.	1.7	49
18	<i>R2d2</i> Drives Selfish Sweeps in the House Mouse. Molecular Biology and Evolution, 2016, 33, 1381-1395.	8.9	55

#	Article	IF	CITATIONS
19	The â€~Omics' of Voluntary Exercise: Systems Approaches to a Complex Phenotype. Trends in Endocrinology and Metabolism, 2015, 26, 673-675.	7.1	9
20	A Multi-Megabase Copy Number Gain Causes Maternal Transmission Ratio Distortion on Mouse Chromosome 2. PLoS Genetics, 2015, 11, e1004850.	3.5	76
21	Maternal exercise before and during pregnancy does not impact offspring exercise or body composition in mice. Journal of Negative Results in BioMedicine, 2015, 14, 13.	1.4	12
22	Quantitative Trait Locus Mapping Methods for Diversity Outbred Mice. G3: Genes, Genomes, Genetics, 2014, 4, 1623-1633.	1.8	195
23	Quantitative genomics of voluntary exercise in mice: transcriptional analysis and mapping of expression QTL in muscle. Physiological Genomics, 2014, 46, 593-601.	2.3	34
24	High-Resolution Genetic Mapping in the Diversity Outbred Mouse Population Identifies <i>Apobec1</i> as a Candidate Gene for Atherosclerosis. G3: Genes, Genomes, Genetics, 2014, 4, 2353-2363.	1.8	46
25	Quantitative trait loci for energy balance traits in an advanced intercross line derived from mice divergently selected for heat loss. PeerJ, 2014, 2, e392.	2.0	3
26	Quantitative trait loci for bone mineral density and femoral morphology in an advanced intercross population of mice. Bone, 2013, 55, 222-229.	2.9	7
27	Genetic determinants of voluntary exercise. Trends in Genetics, 2013, 29, 348-357.	6.7	37
28	A Novel Intronic Single Nucleotide Polymorphism in the <i>Myosin heavy polypeptide 4</i> Gene Is Responsible for the Mini-Muscle Phenotype Characterized by Major Reduction in Hind-Limb Muscle Mass in Mice. Genetics, 2013, 195, 1385-1395.	2.9	36
29	Functional Genomic Architecture of Predisposition to Voluntary Exercise in Mice: Expression QTL in the Brain. Genetics, 2012, 191, 643-654.	2.9	31
30	Exercise and diet affect quantitative trait loci for body weight and composition traits in an advanced intercross population of mice. Physiological Genomics, 2012, 44, 1141-1153.	2.3	11
31	Epistatic Control of Mammary Cancer Susceptibility in Mice may Depend on the Dietary Environment. Hereditary Genetics: Current Research, 2012, 01, 108.	0.1	2
32	Sex-, Diet-, and Cancer-Dependent Epistatic Effects on Complex Traits in Mice. Frontiers in Genetics, 2011, 2, 71.	2.3	17
33	Epistatic interactions of genes influence within-individual variation of physical activity traits in mice. Genetica, 2011, 139, 813-821.	1.1	8
34	ldentification of quantitative trait loci influencing skeletal architecture in mice: Emergence of <i>Cdh11</i> as a primary candidate gene regulating femoral morphology. Journal of Bone and Mineral Research, 2011, 26, 2174-2183.	2.8	26
35	Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Research, 2011, 21, 1213-1222.	5.5	327
36	Exercise, weight loss, and changes in body composition in mice: phenotypic relationships and genetic architecture. Physiological Genomics, 2011, 43, 199-212.	2.3	41

#	Article	IF	CITATIONS
37	Mapping interacting QTL for count phenotypes using hierarchical Poisson and binomial models: an application to reproductive traits in mice. Genetical Research, 2010, 92, 13-23.	0.9	3
38	Genetic architecture of voluntary exercise in an advanced intercross line of mice. Physiological Genomics, 2010, 42, 190-200.	2.3	55
39	Dietary fat alters pulmonary metastasis of mammary cancers through cancer autonomous and non-autonomous changes in gene expression. Clinical and Experimental Metastasis, 2010, 27, 107-116.	3.3	13
40	Dietary fat-dependent transcriptional architecture and copy number alterations associated with modifiers of mammary cancer metastasis. Clinical and Experimental Metastasis, 2010, 27, 279-293.	3.3	9
41	QTL Underlying Voluntary Exercise in Mice: Interactions with the "Mini Muscle" Locus and Sex. Journal of Heredity, 2010, 101, 42-53.	2.4	54
42	Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18933-18938.	7.1	1,113
43	Parent-of-origin effects on voluntary exercise levels and body composition in mice. Physiological Genomics, 2010, 40, 111-120.	2.3	19
44	Strain screen and haplotype association mapping of wheel running in inbred mouse strains. Journal of Applied Physiology, 2010, 109, 623-634.	2.5	79
45	Dopaminergic dysregulation in mice selectively bred for excessive exercise or obesity. Behavioural Brain Research, 2010, 210, 155-163.	2.2	91
46	Importance of randomization in microarray experimental designs with Illumina platforms. Nucleic Acids Research, 2009, 37, 5610-5618.	14.5	29
47	Dietary Fat Alters Body Composition, Mammary Development, and Cytochrome P450 Induction after Maternal TCDD Exposure in DBA/2J Mice with Low-Responsive Aryl Hydrocarbon Receptors. Environmental Health Perspectives, 2009, 117, 1414-1419.	6.0	23
48	The use of plasmodes as a supplement to simulations: A simple example evaluating individual admixture estimation methodologies. Computational Statistics and Data Analysis, 2009, 53, 1755-1766.	1.2	24
49	GenotypeÂ×Âdiet interactions in mice predisposed to mammary cancer: II. Tumors and metastasis. Mammalian Genome, 2008, 19, 179-189.	2.2	23
50	Quantitative trait loci for physical activity traits in mice. Physiological Genomics, 2008, 32, 401-408.	2.3	90
51	Complex Genetics of Obesity in Mouse Models. Annual Review of Nutrition, 2008, 28, 331-345.	10.1	36
52	Phenotypic Effects of the "Mini-Muscle" Allele in a Large HR x C57BL/6J Mouse Backcross. Journal of Heredity, 2008, 99, 349-354.	2.4	36
53	An Epistatic Genetic Basis for Physical Activity Traits in Mice. Journal of Heredity, 2008, 99, 639-646.	2.4	45
54	Fine Mapping of "Mini-Muscle," a Recessive Mutation Causing Reduced Hindlimb Muscle Mass in Mice. Journal of Heredity, 2008, 99, 679-687.	2.4	39

#	Article	IF	CITATIONS
55	Rescue of the Mouse DDK Syndrome by Parent-of-Origin-Dependent Modifiers1. Biology of Reproduction, 2007, 76, 286-293.	2.7	5
56	Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiological Genomics, 2007, 30, 179-191.	2.3	183
57	Bayesian Mapping of Genomewide Interacting Quantitative Trait Loci for Ordinal Traits. Genetics, 2007, 176, 1855-1864.	2.9	35
58	An Efficient Bayesian Model Selection Approach for Interacting Quantitative Trait Loci Models With Many Effects. Genetics, 2007, 176, 1865-1877.	2.9	73
59	Fine Mapping of Mouse QTLs for Fatness Using SNP Data. OMICS A Journal of Integrative Biology, 2007, 11, 341-350.	2.0	3
60	Bayesian analyses of multiple epistatic QTL models for body weight and body composition in mice. Genetical Research, 2006, 87, 45-60.	0.9	36
61	Characterization of eight microsatellite loci in Grant's gazelle (Gazella granti). Molecular Ecology Notes, 2006, 6, 1150-1151.	1.7	9
62	Characterization of nine microsatellite loci in impala (Aepyceros melampus). Molecular Ecology Notes, 2006, 6, 1152-1153.	1.7	1
63	The contribution of epistatic pleiotropy to the genetic architecture of covariation among polygenic traits in mice. Evolution & Development, 2006, 8, 468-476.	2.0	55
64	Genetic variance and covariance patterns for body weight and energy balance characters in an advanced intercross population of mice. Genetics Selection Evolution, 2005, 37, 151-73.	3.0	10
65	Fine mapping of a QTL region with large effects on growth and fatness on mouse chromosome 2. Physiological Genomics, 2005, 21, 411-422.	2.3	34
66	Bayesian Model Selection for Genome-Wide Epistatic Quantitative Trait Loci Analysis. Genetics, 2005, 170, 1333-1344.	2.9	120
67	Genomic Mapping of Direct and Correlated Responses to Long-Term Selection for Rapid Growth Rate in Mice. Genetics, 2005, 170, 1863-1877.	2.9	42
68	Microarray Profiling for Differential Gene Expression in Ovaries and Ovarian Follicles of Pigs Selected for Increased Ovulation Rate. Genetics, 2004, 168, 1529-1537.	2.9	44
69	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	21.4	1,034
70	The M16 Mouse: An Outbred Animal Model of Early Onset Polygenic Obesity and Diabesity. Obesity, 2004, 12, 1397-1407.	4.0	44
71	Characterization of QTL with Major Effects on Fatness and Growth on Mouse Chromosome 2. Obesity, 2004, 12, 1408-1420.	4.0	24
72	A large-sample QTL study in mice: II. Body composition. Mammalian Genome, 2004, 15, 100-113.	2.2	67

#	Article	IF	CITATIONS
73	A large-sample QTL study in mice: I. Growth. Mammalian Genome, 2004, 15, 83-99.	2.2	70
74	High-resolution comparative mapping of pig Chromosome 4, emphasizing the FAT1 region. Mammalian Genome, 2004, 15, 717-731.	2.2	25
75	Generation and sequence characterization of a normalized cDNA library from swine ovarian follicles. Mammalian Genome, 2003, 14, 65-70.	2.2	26
76	EST-based gene discovery in pig: virtual expression patterns and comparative mapping to human. Mammalian Genome, 2003, 14, 565-579.	2.2	54
77	The nature and identification of quantitative trait loci: a community's view. Nature Reviews Genetics, 2003, 4, 911-916.	16.3	390
78	Patterns of Cellular Gene Expression in Cells Infected with Cytopathic or Non ytopathic Bovine Viral Diarrhea Virus. Animal Biotechnology, 2003, 14, 31-49.	1.5	5
79	Evaluation of hypothalamic gene expression in mice divergently selected for heat loss. Physiological Genomics, 2003, 13, 129-137.	2.3	20
80	Pleiotropy of quantitative trait loci for organ weights and limb bone lengths in mice. Physiological Genomics, 2002, 10, 21-29.	2.3	47
81	Differential expression of NAT1 translational repressor during development of bovine intramuscular adipocytes. Physiological Genomics, 2002, 10, 49-56.	2.3	14
82	COMPARATIVE MAPPING OFRPL3, A GENE OVEREXPRESSED IN MULTIPLE OBESITY MODELS. Animal Biotechnology, 2001, 12, 167-171.	1.5	5
83	Quantitative trait loci for directional but not fluctuating asymmetry of mandible characters in mice. Genetical Research, 2000, 76, 27-40.	0.9	46
84	Gene expression in hypothalamus and brown adipose tissue of mice divergently selected for heat loss. Physiological Genomics, 2000, 3, 149-156.	2.3	17
85	Comparative mapping of 18 equine type I genes assigned by somatic cell hybrid analysis. Mammalian Genome, 1999, 10, 271-276.	2.2	21
86	Animal models of obesity. Trends in Molecular Medicine, 1999, 5, 459-460.	2.6	8
87	Quantitative Genetics of Energy Balance—Lessons from Animal Models. Obesity, 1999, 7, 106-110.	4.0	15
88	Ontogeny of Elongation and Gene Expression in the Early Developing Porcine Conceptus1. Biology of Reproduction, 1997, 57, 1256-1265.	2.7	80
89	Detection of Transcripts for Retinoic Acid Receptors, Retinol-Binding Protein, and Transforming Growth Factors during Rapid Trophoblastic Elongation in the Porcine Conceptus1. Biology of Reproduction, 1997, 57, 286-294.	2.7	59
90	Genetic dissection of obesity in polygenic animal models. Behavior Genetics, 1997, 27, 285-306.	2.1	79

#	Article	IF	CITATIONS
91	Mapping of the melatonin receptor la (MTNR1A) gene in pigs, sheep, and cattle. Mammalian Genome, 1997, 8, 368-370.	2.2	84
92	Development of obesity following inactivation of a growth hormone transgene in mice. Transgenic Research, 1996, 5, 13-23.	2.4	41
93	Rescue of Pregnancy and Maintenance of Corpora Lutea in Infertile Transgenic Mice Expressing an Ovine Metallothionein 1a-Ovine Growth Hormone Fusion Gene1. Biology of Reproduction, 1995, 52, 170-178.	2.7	22
94	Regulation of insulin-like growth factor-l and binding protein-3 expression in oMtla-oGH transgenic mice. Transgenic Research, 1994, 3, 127-133.	2.4	18
95	Growth, feed efficiency and body composition of transgenic mice expressing a sheep metallothionein 1a-sheep growth hormone fusion gene. Livestock Science, 1992, 31, 335-350.	1.2	32
96	Genetic Control of Survival of Frozen Mouse Embryos1. Biology of Reproduction, 1990, 42, 775-786.	2.7	28