Joanna Kujawa

List of Publications by Citations

Source: https://exaly.com/author-pdf/7704146/joanna-kujawa-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36,044 90 145 795 h-index g-index citations papers 830 40,794 7.75 7.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
795	Membrane Gas Separation: A Review/State of the Art. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 4638-4663	3.9	1516
794	Membrane technologies for CO2 separation. <i>Journal of Membrane Science</i> , 2010 , 359, 115-125	9.6	630
793	Membrane distillation: Recent developments and perspectives. <i>Desalination</i> , 2015 , 356, 56-84	10.3	626
79²	Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation. <i>Journal of Membrane Science</i> , 2008 , 323, 85-98	9.6	589
791	Membrane Distillation and Related Operations A Review. <i>Separation and Purification Reviews</i> , 2005 , 34, 35-86	7:3	509
790	Recent advances on membrane processes for the concentration of fruit juices: a review. <i>Journal of Food Engineering</i> , 2004 , 63, 303-324	6	379
789	Zeolite Membranes. <i>Advanced Materials</i> , 1999 , 11, 975-996	24	355
788	Recent progress in fluoropolymers for membranes. <i>Progress in Polymer Science</i> , 2014 , 39, 164-198	29.6	313
787	Remediation of textile effluents by membrane based treatment techniques: a state of the art review. <i>Journal of Environmental Management</i> , 2015 , 147, 55-72	7.9	293
786	Biocatalytic membrane reactors: applications and perspectives. <i>Trends in Biotechnology</i> , 2000 , 18, 339-4	19 15.1	277
785	Membrane engineering in process intensificationAn overview. <i>Journal of Membrane Science</i> , 2011 , 380, 1-8	9.6	269
784	Direct contact membrane distillation: modelling and concentration experiments. <i>Journal of Membrane Science</i> , 2000 , 166, 1-11	9.6	268
783	Effect of additives in the casting solution on the formation of PVDF membranes. <i>Desalination</i> , 2006 , 192, 190-197	10.3	250
782	Membrane distillation-crystallization of seawater reverse osmosis brines. <i>Separation and Purification Technology</i> , 2010 , 71, 76-82	8.3	242
781	Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. <i>Journal of Membrane Science</i> , 2002 , 206, 399-415	9.6	237
780	Towards non-toxic solvents for membrane preparation: a review. <i>Green Chemistry</i> , 2014 , 16, 4034	10	233
779	Treatment of aqueous effluents of the leather industry by membrane processes. <i>Journal of Membrane Science</i> , 2001 , 181, 111-126	9.6	233

(1994-2007)

778	Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. <i>European Polymer Journal</i> , 2007 , 43, 1557-1572	5.2	230	
777	Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). <i>Journal of Membrane Science</i> , 2016 , 514, 250-263	9.6	230	
776	Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. <i>Water Research</i> , 2010 , 44, 3883-92	12.5	218	
775	Progress and New Perspectives on Integrated Membrane Operations for Sustainable Industrial Growth. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 1277-1300	3.9	215	
774	Study on a photocatalytic membrane reactor for water purification. <i>Catalysis Today</i> , 2000 , 55, 71-78	5.3	197	
773	Crystalline polymorphism in poly(vinylidenefluoride) membranes. <i>Progress in Polymer Science</i> , 2015 , 51, 94-126	29.6	195	
772	Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. <i>AICHE Journal</i> , 2016 , 62, 461-490	3.6	191	
771	Membrane technology in renewable-energy-driven desalination. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 81, 1-21	16.2	187	
770	Permeation through a heterogeneous membrane: the effect of the dispersed phase. <i>Journal of Membrane Science</i> , 1997 , 128, 141-149	9.6	187	
769	Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. <i>Biomaterials</i> , 2007 , 28, 5487-97	15.6	187	
768	Sustainable wastewater treatment and recycling in membrane manufacturing. <i>Green Chemistry</i> , 2015 , 17, 5196-5205	10	178	
767	Influence of operating parameters on the arsenic removal by nanofiltration. <i>Water Research</i> , 2010 , 44, 97-104	12.5	177	
766	A review on membrane engineering for innovation in wearable fabrics and protective textiles. Journal of Membrane Science, 2013 , 446, 350-375	9.6	170	
765	Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. <i>Desalination</i> , 2007 , 203, 260-276	10.3	168	
764	Clarification and concentration of citrus and carrot juices by integrated membrane processes. Journal of Food Engineering, 2003 , 57, 153-163	6	164	
763	Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD. <i>Journal of Membrane Science</i> , 2010 , 364, 219-232	9.6	159	
762	Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation. <i>Journal of Membrane Science</i> , 2013 , 444, 223-236	9.6	157	
761	Theoretical and Experimental Study on Membrane Distillation in the Concentration of Orange Juice. <i>Industrial & Engineering Chemistry Research</i> , 1994 , 33, 1803-1808	3.9	156	

760	A review of polymeric nanocomposite membranes for water purification. <i>Journal of Industrial and Engineering Chemistry</i> , 2019 , 73, 19-46	6.3	151
759	Fractionation of olive mill wastewaters by membrane separation techniques. <i>Journal of Hazardous Materials</i> , 2013 , 248-249, 185-93	12.8	148
758	Membrane distillation operated at high seawater concentration factors: Role of the membrane on CaCO3 scaling in presence of humic acid. <i>Journal of Membrane Science</i> , 2010 , 346, 263-269	9.6	147
757	Treatment of dye solutions by vacuum membrane distillation. Water Research, 2008, 42, 5031-7	12.5	146
756	Integrated system for recovery of CaCO3, NaCl and MgSO4D H2O from nanofiltration retentate. Journal of Membrane Science, 2004 , 239, 27-38	9.6	146
755	Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation. <i>Journal of Membrane Science</i> , 2016 , 520, 99-110	9.6	144
754	Membrane technology for water production in agriculture: Desalination and wastewater reuse. <i>Desalination</i> , 2015 , 364, 17-32	10.3	141
753	Evaluation of energy requirements in membrane distillation. <i>Chemical Engineering and Processing: Process Intensification</i> , 2008 , 47, 1098-1105	3.7	138
752	Filler-polymer combination: a route to modify gas transport properties of a polymeric membrane. <i>Polymer</i> , 2004 , 45, 5671-5681	3.9	136
751	Membrane Crystallizers. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 2679-2684	3.9	136
75°	Progress and perspectives in PTFE membrane: Preparation, modification, and applications. <i>Journal of Membrane Science</i> , 2018 , 549, 332-349	9.6	135
749	Ultrafiltration of kiwifruit juice: Operating parameters, juice quality and membrane fouling. <i>Journal of Food Engineering</i> , 2007 , 79, 613-621	6	129
748	Process intensification in the textile industry: the role of membrane technology. <i>Journal of Environmental Management</i> , 2004 , 73, 267-74	7.9	127
747	A membrane-based process for the clarification and the concentration of the cactus pear juice. <i>Journal of Food Engineering</i> , 2007 , 80, 914-921	6	125
746	Hybrid processes coupling photocatalysis and membranes for degradation of organic pollutants in water. <i>Catalysis Today</i> , 2002 , 75, 77-85	5.3	125
745	Effect of thermal history on water sorption, elastic properties and the glass transition of epoxy resins. <i>Polymer</i> , 1979 , 20, 1143-1148	3.9	125
744	Catalytic polymeric membranes: Preparation and application. <i>Applied Catalysis A: General</i> , 2006 , 307, 167-183	5.1	124
743	Evaluation of cell behaviour related to physico-chemical properties of polymeric membranes to be used in bioartificial organs. <i>Biomaterials</i> , 2002 , 23, 2485-97	15.6	124

(2002-2019)

742	A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). <i>Journal of Membrane Science</i> , 2019 , 574, 44-54	9.6	121
741	Direct contact membrane distillation for treatment of oilfield produced water. <i>Separation and Purification Technology</i> , 2014 , 126, 69-81	8.3	119
740	Clarification and concentration of pomegranate juice (Punica granatum L.) using membrane processes. <i>Journal of Food Engineering</i> , 2011 , 107, 366-373	6	119
739	An analysis of the performance of membrane reactors for the watergas shift reaction using gas feed mixtures. <i>Catalysis Today</i> , 2000 , 56, 53-64	5.3	118
738	Progress of Nanocomposite Membranes for Water Treatment. <i>Membranes</i> , 2018 , 8,	3.8	116
737	Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. <i>Journal of Food Engineering</i> , 2017 , 195, 1-13	6	114
736	An economic feasibility study for water gas shift membrane reactor. <i>Journal of Membrane Science</i> , 2001 , 181, 21-27	9.6	113
735	Progress in membrane crystallization. Current Opinion in Chemical Engineering, 2012, 1, 178-182	5.4	111
734	Clarification of blood orange juice by ultrafiltration: analyses of operating parameters, membrane fouling and juice quality. <i>Desalination</i> , 2007 , 212, 15-27	10.3	110
733	Integrating Membrane Contactors Technology and Pressure-Driven Membrane Operations for Seawater Desalination. <i>Chemical Engineering Research and Design</i> , 2006 , 84, 209-220	5.5	110
732	State of the Art and Recent Progresses in Membrane Contactors. <i>Chemical Engineering Research and Design</i> , 2005 , 83, 223-233	5.5	110
731	Photocatalytic membrane reactors for degradation of organic pollutants in water. <i>Catalysis Today</i> , 2001 , 67, 273-279	5.3	109
730	A study of membrane distillation and crystallization for lithium recovery from high-concentrated aqueous solutions. <i>Journal of Membrane Science</i> , 2016 , 505, 167-173	9.6	106
729	A new integrated membrane process for producing clarified apple juice and apple juice aroma concentrate. <i>Journal of Food Engineering</i> , 2000 , 46, 109-125	6	106
728	Simulation study of water gas shift reaction in a membrane reactor. <i>Journal of Membrane Science</i> , 2007 , 306, 329-340	9.6	105
727	Permeation properties of a thin silicalite-1 (MFI) membrane. <i>Journal of Membrane Science</i> , 2003 , 222, 181-190	9.6	105
726	A new integrated membrane process for the production of concentrated blood orange juice: Effect on bioactive compounds and antioxidant activity. <i>Food Chemistry</i> , 2008 , 106, 1021-1030	8.5	104
725	Integrated membrane operations for seawater desalination. <i>Desalination</i> , 2002 , 147, 77-81	10.3	103

724	Comparison of the performance of UF membranes in olive mill wastewaters treatment. <i>Water Research</i> , 2011 , 45, 3197-204	12.5	102
723	Experimental analysis and simulation of the gas transport in dense Hyflon AD60X membranes: Influence of residual solvent. <i>Polymer</i> , 2007 , 48, 2619-2635	3.9	102
722	Membrane distillation in the textile wastewater treatment Desalination, 1991, 83, 209-224	10.3	101
721	Energetic and exergetic analysis of an integrated membrane desalination system. <i>Desalination</i> , 1999 , 124, 243-249	10.3	100
720	Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods. <i>Journal of Membrane Science</i> , 2016 , 509, 94-104	9.6	99
719	A membrane-based study for the recovery of polyphenols from bergamot juice. <i>Journal of Membrane Science</i> , 2011 , 375, 182-190	9.6	98
718	Human hepatocyte functions in a crossed hollow fiber membrane bioreactor. <i>Biomaterials</i> , 2009 , 30, 2531-43	15.6	97
717	Modelling and simulation of hydrogen permeation through supported Pd-alloy membranes with a multicomponent approach. <i>Chemical Engineering Science</i> , 2008 , 63, 2149-2160	4.4	97
716	Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation. <i>Chemical Engineering Research and Design</i> , 2013 , 91, 1966-1977	5.5	96
715	Efficient technologies for worldwide clean water supply. <i>Chemical Engineering and Processing: Process Intensification</i> , 2012 , 51, 2-17	3.7	95
714	Preparation of solvent stable polyphenylsulfone hollow fiber nanofiltration membranes. <i>Journal of Membrane Science</i> , 2011 , 384, 89-96	9.6	95
713	Influence of the structural properties of poly(vinylidene fluoride) membranes on the heterogeneous nucleation rate of protein crystals. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 12438-45	3.4	95
712	Influence of hydrophobization conditions and ceramic membranes pore size on their properties in vacuum membrane distillation of waterBrganic solvent mixtures. <i>Journal of Membrane Science</i> , 2016 , 499, 442-451	9.6	94
711	An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen: Experimental analysis of water gas shift. <i>Journal of Power Sources</i> , 2008 , 182, 160-167	8.9	94
710	Sulfonated PEEK-WC membranes for possible fuel cell applications. <i>Journal of Membrane Science</i> , 2004 , 228, 139-148	9.6	93
709	Membrane distillataion in the treatment of aqueous solutions. <i>Journal of Membrane Science</i> , 1987 , 33, 277-284	9.6	93
708	Membrane gas separation progresses for process intensification strategy in the petrochemical industry. <i>Petroleum Chemistry</i> , 2010 , 50, 271-282	1.1	91
707	Performance of PDMS membranes in pervaporation: effect of silicalite fillers and comparison with SBS membranes. <i>Journal of Colloid and Interface Science</i> , 2010 , 346, 254-64	9.3	91

(2008-2006)

706	Integrated membrane process for the production of highly nutritional kiwifruit juice. <i>Desalination</i> , 2006 , 189, 21-30	10.3	91
7°5	Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications. <i>Separation and Purification Technology</i> , 2013 , 115, 27-38	8.3	89
704	Methanol and ethanol steam reforming in membrane reactors: An experimental study. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 1201-1210	6.7	89
703	Metal ion separation and concentration with supported liquid membranes. <i>Journal of Membrane Science</i> , 1986 , 28, 123-138	9.6	89
702	Pressure-driven membrane operations and membrane distillation technology integration for water purification. <i>Desalination</i> , 2008 , 223, 396-409	10.3	88
701	PVDF and HYFLON AD membranes: Ideal interfaces for contactor applications. <i>Journal of Membrane Science</i> , 2007 , 300, 51-62	9.6	87
700	Production of concentrated kiwifruit juice by integrated membrane process. <i>Food Research International</i> , 2004 , 37, 139-148	7	87
699	Integrated membrane operations in desalination processes. <i>Desalination</i> , 1999 , 122, 141-145	10.3	87
698	Novel polyphenylsulfone membrane for potential use in solvent nanofiltration. <i>Journal of Membrane Science</i> , 2011 , 379, 60-68	9.6	86
697	Concentration polarization analysis in self-supported Pd-based membranes. <i>Separation and Purification Technology</i> , 2009 , 66, 613-624	8.3	85
696	Process intensification strategies and membrane engineering. <i>Green Chemistry</i> , 2012 , 14, 1561	10	84
695	Membrane distillation: An experimental study. <i>Desalination</i> , 1985 , 53, 339-346	10.3	82
694	Physico-chemical parameters of cactus pear (Opuntia ficus-indica) juice clarified by microfiltration and ultrafiltration processes. <i>Desalination</i> , 2010 , 250, 1101-1104	10.3	81
693	Methane Steam Reforming Analysis in a Palladium-Based Catalytic Membrane Reactor. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 3369-3374	3.9	81
692	Membrane reactor for water gas shift reaction. Separation and Purification Technology, 1996, 10, 243-2	54	81
691	Highly efficient hydrophobic titania ceramic membranes for water desalination. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 14223-30	9.5	80
690	Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. <i>Journal of Membrane Science</i> , 2015 , 479, 204-212	9.6	80
689	Recovery of bioactive compounds in kiwifruit juice by ultrafiltration. <i>Innovative Food Science and Emerging Technologies</i> , 2008 , 9, 556-562	6.8	80

688	New PVDF membranes: The effect of plasma surface modification on retention in nanofiltration of aqueous solution containing organic compounds. <i>Water Research</i> , 2007 , 41, 4309-16	12.5	79
687	Bio-mimetic sensors based on molecularly imprinted membranes. <i>Sensors</i> , 2014 , 14, 13863-912	3.8	78
686	Recovery of phenolic compounds from orange press liquor by nanofiltration. <i>Food and Bioproducts Processing</i> , 2012 , 90, 867-874	4.9	78
685	The effect of mixture gas on hydrogen permeation through a palladium membrane: Experimental study and theoretical approach. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 1837-1845	6.7	78
684	High flux asymmetric gas separation membranes of modified poly(ether ether ketone) prepared by the dry phase inversion technique. <i>Journal of Membrane Science</i> , 2005 , 255, 167-180	9.6	78
683	Membrane emulsification technology: Twenty-five years of inventions and research through patent survey. <i>Journal of Membrane Science</i> , 2014 , 468, 410-422	9.6	77
682	The effects of thermally stable titanium silicon oxide nanoparticles on structure and performance of cellulose acetate ultrafiltration membranes. <i>Separation and Purification Technology</i> , 2014 , 133, 55-68	8.3	76
681	Sulfonation of polyetheretherketone by chlorosulfuric acid. <i>Journal of Applied Polymer Science</i> , 1998 , 70, 477-482	2.9	76
680	WGS reaction in a membrane reactor using a porous stainless steel supported silica membrane. <i>Chemical Engineering and Processing: Process Intensification</i> , 2007 , 46, 119-126	3.7	76
679	Removal of silver and copper ions from acidic thiourea solutions with a supported liquid membrane containing D2EHPA as carrier. <i>Separation and Purification Technology</i> , 2002 , 28, 235-244	8.3	76
678	Influence of the blend composition on the properties and separation performance of novel solvent resistant polyphenylsulfone/polyimide nanofiltration membranes. <i>Journal of Membrane Science</i> , 2013 , 447, 107-118	9.6	74
677	Lipase-catalyzed optical resolution of racemic naproxen in biphasic enzyme membrane reactors. Journal of Membrane Science, 2001 , 184, 27-38	9.6	74
676	Morphology and transport property control of modified poly(ether ether ketone) (PEEKWC) hollow fiber membranes prepared from PEEKWC/PVP blends: influence of the relative humidity in the air gap. <i>Journal of Membrane Science</i> , 2005 , 255, 13-22	9.6	73
675	Membrane Bioreactor (MBR) Technology & Promising Approach for Industrial Water Reuse. <i>Procedia Engineering</i> , 2012 , 33, 234-241		72
674	Selective Glycine Polymorph Crystallization by Using Microporous Membranes. <i>Crystal Growth and Design</i> , 2007 , 7, 526-530	3.5	72
673	Reclamation of sodium sulfate from industrial wastewater by using membrane distillation and membrane crystallization. <i>Desalination</i> , 2017 , 401, 112-119	10.3	71
672	PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: Effect of PVDF molecular weight. <i>Journal of Membrane Science</i> , 2014 , 471, 237-246	9.6	71
671	Sieverts law empirical exponent for Pd-based membranes: critical analysis in pure H2 permeation. Journal of Physical Chemistry B, 2010, 114, 6033-47	3.4	71

670	Quality improvement of recycled chromium in the tanning operation by membrane processes. <i>Desalination</i> , 1997 , 108, 193-203	10.3	71
669	Biotransformation and liver-specific functions of human hepatocytes in culture on RGD-immobilized plasma-processed membranes. <i>Biomaterials</i> , 2005 , 26, 4432-41	15.6	71
668	A molecular simulation study on gas diffusion in a dense poly(ether@ther@etone) membrane. <i>Polymer</i> , 2001 , 42, 521-533	3.9	71
667	The advent of graphene and other two-dimensional materials in membrane science and technology. <i>Current Opinion in Chemical Engineering</i> , 2017 , 16, 78-85	5.4	70
666	Organic vapour transport in glassy perfluoropolymer membranes: A simple semi-quantitative approach to analyze clustering phenomena by time lag measurements. <i>Journal of Membrane Science</i> , 2011 , 367, 141-151	9.6	70
665	Comparative Study of Different Probing Techniques for the Analysis of the Free Volume Distribution in Amorphous Glassy Perfluoropolymers. <i>Macromolecules</i> , 2009 , 42, 7589-7604	5.5	70
664	Membrane treatment by nanofiltration of exhausted vegetable tannin liquors from the leather industry. <i>Water Research</i> , 2003 , 37, 2426-34	12.5	70
663	Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: Recent developments. <i>Journal of Hazardous Materials</i> , 2019 , 370, 172-195	12.8	69
662	Molecular imprinted polymeric membrane for naringin recognition. <i>Journal of Membrane Science</i> , 2002 , 201, 77-84	9.6	69
661	One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment. <i>Separation and Purification Technology</i> , 2019 , 210, 511-520	8.3	68
660	Membrane distillation of concentrated brines R ole of water activities in the evaluation of driving force. <i>Journal of Membrane Science</i> , 2006 , 280, 937-947	9.6	68
659	A study on catalytic membrane reactors for water gas shift reaction. <i>Separation and Purification Technology</i> , 1996 , 10, 53-61		68
658	Fixed sites plasticized cellulose triacetate membranes containing crown ethers for silver(I), copper(II) and gold(III) ions transport. <i>Journal of Membrane Science</i> , 2004 , 228, 149-157	9.6	67
657	Membrane-based zero liquid discharge: Myth or reality?. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2017 , 80, 192-202	5.3	66
656	Long-term maintenance of human hepatocytes in oxygen-permeable membrane bioreactor. <i>Biomaterials</i> , 2006 , 27, 4794-803	15.6	66
655	Transport properties of a co-poly(amide-12-b-ethylene oxide) membrane: A comparative study between experimental and molecular modelling results. <i>Journal of Membrane Science</i> , 2008 , 323, 316-3	29 ^{.6}	65
654	Zeolite-based composite PEEK-WC membranes: Gas transport and surface properties. <i>Microporous and Mesoporous Materials</i> , 2008 , 115, 67-74	5.3	65
653	Stability and Effect of Diluents in Supported Liquid Membranes for Cr(III), Cr(VI), and Cd(II) Recovery. <i>Separation Science and Technology</i> , 1989 , 24, 1015-1032	2.5	64

652	Experimental analysis, modeling and optimization of chromium (VI) removal from aqueous solutions by polymer-enhanced ultrafiltration. <i>Journal of Membrane Science</i> , 2014 , 456, 139-154	9.6	63
651	Photocatalytic hollow fiber membranes for the degradation of pharmaceutical compounds in wastewater. <i>Journal of Environmental Chemical Engineering</i> , 2017 , 5, 5014-5024	6.8	63
650	Purification of lactic acid from microfiltrate fermentation broth by cross-flow nanofiltration. <i>Biochemical Engineering Journal</i> , 2012 , 69, 130-137	4.2	63
649	Upgrading of a syngas mixture for pure hydrogen production in a PdAg membrane reactor. <i>Chemical Engineering Science</i> , 2009 , 64, 3448-3454	4.4	63
648	Gas permeation properties of phenylene oxide polymers. <i>Journal of Membrane Science</i> , 1998 , 138, 99-1	03 .6	63
647	Simulation of CO2 hydrogenation with CH3OH removal in a zeolite membrane reactor. <i>Chemical Engineering Journal</i> , 2002 , 85, 53-59	14.7	63
646	Recovery and reuse of chemicals in unhairing, degreasing and chromium tanning processes by membranes. <i>Desalination</i> , 1997 , 113, 251-261	10.3	62
645	Membrane crystallization of lysozyme: kinetic aspects. <i>Journal of Crystal Growth</i> , 2003 , 257, 359-369	1.6	62
644	Study of an enzyme membrane reactor with immobilized fumarase for production of L-malic acid. <i>Biotechnology and Bioengineering</i> , 2001 , 72, 77-84	4.9	62
643	Direct contact membrane distillation for the concentration of clarified orange juice. <i>Journal of Food Engineering</i> , 2016 , 187, 37-43	6	62
642	Highly hydrophobic ceramic membranes applied to the removal of volatile organic compounds in pervaporation. <i>Chemical Engineering Journal</i> , 2015 , 260, 43-54	14.7	61
641	Vacuum membrane distillation for purifying waters containing arsenic. <i>Desalination</i> , 2013 , 323, 17-21	10.3	61
640	A novel model equation for the permeation of hydrogen in mixture with carbon monoxide through PdAg membranes. <i>Separation and Purification Technology</i> , 2008 , 61, 217-224	8.3	61
639	Pervaporation separation of MeOH/MTBE mixtures with modified PEEK membrane: Effect of operating conditions. <i>Journal of Membrane Science</i> , 2011 , 371, 1-9	9.6	60
638	Membrane engineering for process intensification: a perspective. <i>Journal of Chemical Technology and Biotechnology</i> , 2007 , 82, 223-227	3.5	60
637	A molecular imprinted membrane for molecular discrimination of tetracycline hydrochloride. <i>Journal of Membrane Science</i> , 2005 , 254, 13-19	9.6	60
636	Engineering evaluation of CO2 separation by membrane gas separation systems. <i>Journal of Membrane Science</i> , 2014 , 454, 305-315	9.6	59
635	Kinetic study of a biocatalytic membrane reactor containing immobilized Eglucosidase for the hydrolysis of oleuropein. <i>Journal of Membrane Science</i> , 2009 , 339, 215-223	9.6	59

(2006-2007)

634	New Metrics for Evaluating the Performance of Membrane Operations in the Logic of Process Intensification. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 2268-2271	3.9	59	
633	Co-current and counter-current modes for methanol steam reforming membrane reactor: Experimental study. <i>Catalysis Today</i> , 2006 , 118, 237-245	5.3	59	
632	Tailoring nonsolvent-thermally induced phase separation (N-TIPS) effect using triple spinneret to fabricate high performance PVDF hollow fiber membranes. <i>Journal of Membrane Science</i> , 2018 , 559, 117-126	9.6	58	
631	Effect of the preparation conditions on the formation of asymmetric poly(vinylidene fluoride) hollow fibre membranes with a dense skin. <i>European Polymer Journal</i> , 2010 , 46, 1713-1725	5.2	58	
630	New breathable and waterproof coatings for textiles: effect of an aliphatic polyurethane on the formation of PEEK-WC porous membranes. <i>European Polymer Journal</i> , 2002 , 38, 235-242	5.2	58	
629	Effect of energy transport on a palladium-based membrane reactor for methane steam reforming process. <i>Catalysis Today</i> , 2001 , 67, 85-99	5.3	58	
628	Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation. <i>Chemical Engineering and Processing: Process Intensification</i> , 2016 , 102, 16-26	3.7	57	
627	Wind-Aided Intensified eVaporation (WAIV) and Membrane Crystallizer (MCr) integrated brackish water desalination process: Advantages and drawbacks. <i>Desalination</i> , 2011 , 273, 127-135	10.3	57	
626	Theoretical and experimental analysis of methane steam reforming in a membrane reactor. <i>Canadian Journal of Chemical Engineering</i> , 1999 , 77, 698-706	2.3	57	
625	Microporous membranes in membrane distillation. <i>Pure and Applied Chemistry</i> , 1986 , 58, 1657-1662	2.1	57	
624	ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser. <i>Reactive and Functional Polymers</i> , 2014 , 79, 1-7	4.6	56	
623	Solvent-free, heterogeneous photooxygenation of hydrocarbons by hyflon membranes embedding a fluorous-tagged decatungstate. <i>Chemical Communications</i> , 2006 , 4533-5	5.8	56	
622	Membrane distillation properties of TiO2 ceramic membranes modified by perfluoroalkylsilanes. <i>Desalination and Water Treatment</i> , 2013 , 51, 1352-1361		55	
621	Polyamide-6 based pervaporation membranes for organicBrganic separation. <i>Separation and Purification Technology</i> , 2013 , 110, 63-73	8.3	55	
620	Probing membrane and interface properties in concentrated electrolyte solutions. <i>Journal of Membrane Science</i> , 2014 , 459, 177-189	9.6	55	
619	Hybrid nanofiltrationThembrane crystallization system for the treatment of sulfate wastes. Journal of Membrane Science, 2010 , 360, 493-498	9.6	55	
618	Concentration of clarified kiwifruit juice by osmotic distillation. <i>Journal of Food Engineering</i> , 2007 , 79, 1397-1404	6	55	
617	Heterogenization of Polyoxometalates on the Surface of Plasma-Modified Polymeric Membranes. <i>Chemistry of Materials</i> , 2006 , 18, 1561-1568	9.6	55	

616	The influence of polymeric membrane surface free energy on cell metabolic functions. <i>Journal of Materials Science: Materials in Medicine</i> , 2001 , 12, 959-63	4.5	55
615	Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. <i>Fuel Processing Technology</i> , 2020 , 206, 106464	7.2	55
614	Mixed matrix membranes containing functionalized multiwalled carbon nanotubes: Mesoscale simulation and experimental approach for optimizing dispersion. <i>Journal of Membrane Science</i> , 2016 , 514, 195-209	9.6	55
613	Photocatalytic Membranes in Photocatalytic Membrane Reactors. <i>Processes</i> , 2018 , 6, 162	2.9	55
612	Preparation of Hyflon AD60/PVDF composite hollow fiber membranes for vacuum membrane distillation. <i>Separation and Purification Technology</i> , 2016 , 157, 1-8	8.3	54
611	Preparation and characterization of new non-fluorinated polymeric and composite membranes for PEMFCs. <i>Journal of Membrane Science</i> , 2010 , 348, 326-336	9.6	54
610	Hydrolysis and regioselective transesterification catalyzed by immobilized lipases in membrane bioreactors. <i>Journal of Membrane Science</i> , 1997 , 125, 177-187	9.6	54
609	Evaluation of molecularly imprinted membranes based on different acrylic copolymers. <i>Journal of Membrane Science</i> , 2008 , 320, 167-172	9.6	54
608	A new membrane-based crystallization technique: tests on lysozyme. <i>Journal of Crystal Growth</i> , 2003 , 247, 166-176	1.6	54
60 7	Tailoring novel fibrillar morphologies in poly(vinylidene fluoride) membranes using a low toxic triethylene glycol diacetate (TEGDA) diluent. <i>Journal of Membrane Science</i> , 2015 , 473, 128-136	9.6	53
606	Matrimid 5218 dense membrane for the separation of azeotropic MeOH-MTBE mixtures by pervaporation. <i>Separation and Purification Technology</i> , 2018 , 199, 27-36	8.3	53
605	Application of Membrane Crystallization for Minerals' Recovery from Produced Water. <i>Membranes</i> , 2015 , 5, 772-92	3.8	53
604	Membrane Condenser as a New Technology for Water Recovery from Humidified Wastel Gaseous Streams. <i>Industrial & Discourse Chemistry Research</i> , 2013 , 52, 1160-1167	3.9	53
603	Supersaturation Control and Heterogeneous Nucleation in Membrane Crystallizers: Facts and Perspectives. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 11878-11889	3.9	53
602	Comparative study of sorption and permeation techniques for the determination of heptane and toluene transport in polyethylene membranes. <i>Journal of Membrane Science</i> , 2009 , 338, 161-174	9.6	53
601	Performance of a biphasic organic/aqueous hollow fibre reactor using immobilized lipase. <i>Journal of Chemical Technology and Biotechnology</i> , 1995 , 64, 345-352	3.5	53
600	Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO). <i>Journal of Physical Chemistry B</i> , 2012 , 116, 12864-77	3.4	52
599	Novel composite poly(4-vinylpyridine)/polypropylene membranes with recognition properties for (S)-naproxen. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2005 , 37, 1003-8	3.5	52

(2016-2020)

598	Investigating the potential of membranes formed by the vapor induced phase separation process. Journal of Membrane Science, 2020 , 597, 117601	9.6	52
597	Exploring and Exploiting the Effect of Solvent Treatment in Membrane Separations. <i>ACS Applied Materials & Materia</i>	9.5	51
596	Immobilized biocatalytic process development and potential application in membrane separation: a review. <i>Critical Reviews in Biotechnology</i> , 2016 , 36, 43-58	9.4	51
595	Hollow fibers for seawater desalination from blends of PVDF with different molecular weights: Morphology, properties and VMD performance. <i>Polymer</i> , 2014 , 55, 1296-1306	3.9	51
594	Human hepatocytes and endothelial cells in organotypic membrane systems. <i>Biomaterials</i> , 2011 , 32, 8848-59	15.6	51
593	A study on a perfluoropolymer purification and its application to membrane formation. <i>Journal of Membrane Science</i> , 1999 , 163, 203-209	9.6	51
592	On the coupling effect in pervaporation. <i>Journal of Membrane Science</i> , 1993 , 81, 43-55	9.6	51
591	Membrane-based agro-food production processes for polyphenol separation, purification and concentration. <i>Current Opinion in Food Science</i> , 2018 , 23, 149-164	9.8	50
590	Efficiency of grafting of Al2O3, TiO2 and ZrO2 powders by perfluoroalkylsilanes. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 420, 64-73	5.1	50
589	Membrane Engineering for Green Process Engineering. <i>Engineering</i> , 2017 , 3, 290-298	9.7	50
588	Improved functions of human hepatocytes on NH3 plasma-grafted PEEK-WC-PU membranes. <i>Biomaterials</i> , 2009 , 30, 4348-56	15.6	50
587	A novel seeding procedure for preparing tubular NaY zeolite membranes. <i>Microporous and Mesoporous Materials</i> , 2009 , 119, 129-136	5.3	50
586	Ultrafiltration of orange press liquor: Optimization for permeate flux and fouling index by response surface methodology. <i>Separation and Purification Technology</i> , 2011 , 80, 1-10	8.3	50
585	Pervaporation performance of unfilled and filled PDMS membranes and novel SBS membranes for the removal of toluene from diluted aqueous solutions. <i>Chemical Engineering Journal</i> , 2010 , 159, 37-46	14.7	50
584	Membrane crystallization of lysozyme under forced solution flow. <i>Journal of Membrane Science</i> , 2005 , 257, 134-143	9.6	50
583	Study of a Cell-Recycle Membrane Fermentor for the Production of Lactic Acid by Lactobacillus bulgaricus. <i>Industrial & Discourt Bulgaricus</i> .	3.9	50
582	Coupled transport of amino acids through a supported liquid membrane. I. Experimental optimization. <i>Journal of Membrane Science</i> , 1992 , 73, 203-215	9.6	50
581	Salinity gradient power-reverse electrodialysis and alkaline polymer electrolyte water electrolysis for hydrogen production. <i>Journal of Membrane Science</i> , 2016 , 514, 155-164	9.6	50

580	Membrane crystallization for salts recovery from brineIn experimental and theoretical analysis. <i>Desalination and Water Treatment</i> , 2016 , 57, 7593-7603		49
579	Enhancing wetting resistance of poly(vinylidene fluoride) membranes for vacuum membrane distillation. <i>Desalination</i> , 2017 , 415, 58-66	10.3	49
578	Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment. <i>Journal of Membrane Science</i> , 2016 , 510, 524-532	9.6	49
577	Pervaporation separation of ethanol/ETBE mixture using poly(lactic acid)/poly(vinyl pyrrolidone) blend membranes. <i>Journal of Membrane Science</i> , 2011 , 373, 29-35	9.6	49
576	Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. <i>Separation and Purification Technology</i> , 2007 , 57, 94-102	8.3	49
575	Performance of a nanofiltration membrane for removal of ethanol from aqueous solutions by pervaporation. <i>Separation and Purification Technology</i> , 2008 , 60, 54-63	8.3	49
574	Preparation and characterization of sulfonated PEEK-WC membranes for fuel cell applications. Journal of Power Sources, 2006 , 160, 139-147	8.9	49
573	Membrane Technology and Sustainable Growth. <i>Chemical Engineering Research and Design</i> , 2004 , 82, 1557-1562	5.5	49
572	Hygrothermal history dependence of moisture sorption kinetics in epoxy resins. <i>Polymer Engineering and Science</i> , 1981 , 21, 18-22	2.3	49
571	Molecular Grafting of Fluorinated and Nonfluorinated Alkylsiloxanes on Various Ceramic Membrane Surfaces for the Removal of Volatile Organic Compounds Applying Vacuum Membrane Distillation. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 6571-6590	9.5	48
570	Evaluation of integrated microfiltration and membrane distillation/crystallization processes for produced water treatment. <i>Desalination</i> , 2018 , 434, 161-168	10.3	48
569	A simulation study on OH-containing polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): relationship between gas transport properties and free volume morphology. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 2746-57	3.4	48
568	Influence of membrane surface properties on the growth of neuronal cells isolated from hippocampus. <i>Journal of Membrane Science</i> , 2008 , 325, 139-149	9.6	48
567	Engineering Evaluations of a Catalytic Membrane Reactor for the Water Gas Shift Reaction. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 7676-7683	3.9	48
566	Conversion Temperature Diagram for a Palladium Membrane Reactor. Analysis of an Endothermic Reaction: Methane Steam Reforming. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 2017-	2026	48
565	Effect of citrate-based non-toxic solvents on poly(vinylidene fluoride) membrane preparation via thermally induced phase separation. <i>Journal of Membrane Science</i> , 2015 , 493, 232-242	9.6	47
564	Tubular hydrophobic ceramic membrane with asymmetric structure for water desalination via vacuum membrane distillation process. <i>Desalination</i> , 2018 , 443, 212-220	10.3	47
563	Supercritical gel drying: a powerful tool for tailoring symmetric porous PVDF-HFP membranes. <i>ACS Applied Materials & District Material</i>	9.5	47

(2015-2005)

562	Trypsin crystallization by membrane-based techniques. <i>Journal of Structural Biology</i> , 2005 , 150, 41-9	3.4	47
561	Asymmetric membranes of modified poly(ether ether ketone) with an ultra-thin skin for gas and vapour separations. <i>Journal of Membrane Science</i> , 2006 , 272, 188-197	9.6	47
560	Relaxation controlled (case II) transport of lower alcohols in poly(methyl methacrylate). <i>Polymer</i> , 1976 , 17, 195-198	3.9	47
559	Separation of CO2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes. <i>Journal of Membrane Science</i> , 2015 , 492, 257-262	9.6	46
558	The influence of surface modification on the physicochemical properties of ceramic membranes. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2014 , 443, 567-575	5.1	46
557	Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance. <i>Journal of Membrane Science</i> , 2015 , 490, 129-138	9.6	46
556	A porous stainless steel supported silica membrane for WGS reaction in a catalytic membrane reactor. <i>Chemical Engineering Science</i> , 2007 , 62, 5621-5626	4.4	46
555	Equilibrium conversion for a Pd-based membrane reactor. Dependence on the temperature and pressure. <i>Chemical Engineering and Processing: Process Intensification</i> , 2003 , 42, 231-236	3.7	46
554	Roughness-enhanced hydrophobic graphene oxide membrane for water desalination via membrane distillation. <i>Journal of Membrane Science</i> , 2020 , 611, 118364	9.6	45
553	Thermally rearranged polymer membranes for desalination. Energy and Environmental Science,		
	2016 , 9, 878-884	35.4	45
552	2016, 9, 878-884 How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes. ACS Applied Materials & Cer	35·4 9·5	45
	How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes. ACS Applied Materials & Ceramic Membranes.		45
552	How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 7564-77 Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater	9.5	45
552 551	How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 7564-77 Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination. <i>Applied Energy</i> , 2019 , 253, 113551 Development of molecularly imprinted membranes for selective recognition of primary amines in	9.5	45 45
552 551 550	How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 7564-77 Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination. <i>Applied Energy</i> , 2019 , 253, 113551 Development of molecularly imprinted membranes for selective recognition of primary amines in organic medium. <i>Separation and Purification Technology</i> , 2012 , 87, 40-46 Diffusive and convective transport through hollow fiber membranes for liver cell culture. <i>Journal of</i>	9.5 10.7 8.3	45 45 45
552551550549	How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 7564-77 Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination. <i>Applied Energy</i> , 2019 , 253, 113551 Development of molecularly imprinted membranes for selective recognition of primary amines in organic medium. <i>Separation and Purification Technology</i> , 2012 , 87, 40-46 Diffusive and convective transport through hollow fiber membranes for liver cell culture. <i>Journal of Biotechnology</i> , 2005 , 117, 309-21 Submerged hollow fiber ultrafiltration as seawater pretreatment in the logic of integrated	9.5 10.7 8.3 3.7	45 45 45 45
552551550549548	How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes. <i>ACS Applied Materials & Materials </i>	9.5 10.7 8.3 3.7 10.3	45 45 45 45 44

544	Antisolvent membrane crystallization of pharmaceutical compounds. <i>Journal of Pharmaceutical Sciences</i> , 2009 , 98, 4902-13	3.9	43
543	Removal of As(V) by PVDF hollow fibers membrane contactors using Aliquat-336 as extractant. <i>Desalination</i> , 2010 , 264, 193-200	10.3	43
542	On the unusual solvent retention and the effect on the gas transport in perfluorinated Hyflon ADII membranes. <i>Journal of Membrane Science</i> , 2007 , 287, 132-137	9.6	43
541	A multi-layered view of chemical and biochemical engineering. <i>Chemical Engineering Research and Design</i> , 2020 , 155, A133-A145	5.5	43
540	Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: current state of the art. <i>Reviews in Chemical Engineering</i> , 2019 , 35, 565-590	5	42
539	Tailored Hydrogel Membranes for Efficient Protein Crystallization. <i>Advanced Functional Materials</i> , 2014 , 24, 1582-1590	15.6	42
538	Poly(lactic acid)/poly(vinyl pyrrolidone) blend membranes: Effect of membrane composition on pervaporation separation of ethanol/cyclohexane mixture. <i>Journal of Membrane Science</i> , 2010 , 362, 105	5-9:62	42
537	Controlling Polymorphism with Membrane-Based Crystallizers: Application to Form I and II of Paracetamol. <i>Chemistry of Materials</i> , 2007 , 19, 2386-2388	9.6	42
536	A New Generation of Catalytic Poly(vinylidene fluoride) Membranes: Coupling Plasma Treatment with Chemical Immobilization of Tungsten-Based Catalysts. <i>Advanced Functional Materials</i> , 2006 , 16, 1417-1424	15.6	42
535	Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion. <i>Journal of Power Sources</i> , 2017 , 340, 282-293	8.9	41
534	Using the Green Solvent Dimethyl Sulfoxide To Replace Traditional Solvents Partly and Fabricating PVC/PVC-g-PEGMA Blended Ultrafiltration Membranes with High Permeability and Rejection. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 6413-6423	3.9	41
533	Polymeric and mixed matrix polyimide membranes. <i>Separation and Purification Technology</i> , 2014 , 132, 684-696	8.3	41
532	Influence of micro-patterned PLLA membranes on outgrowth and orientation of hippocampal neurites. <i>Biomaterials</i> , 2010 , 31, 7000-11	15.6	41
531	Zeolite inorganic supports for BSA immobilization: comparative study of several zeolite crystals and composite membranes. <i>Colloids and Surfaces B: Biointerfaces</i> , 2007 , 55, 67-76	6	41
530	Hybrid photocatalytic membranes embedding decatungstate for heterogeneous photooxygenation. <i>Topics in Catalysis</i> , 2006 , 40, 133-140	2.3	41
529	Preparation of asymmetric PEEKWC flat membranes with different microstructures by wet phase inversion. <i>Journal of Applied Polymer Science</i> , 2004 , 92, 576-591	2.9	41
528	Membrane Contactors and Catalytic Membrane Reactors in Process Intensification. <i>Chemical Engineering and Technology</i> , 2003 , 26, 975-981	2	41
527	The effect of surface roughness of microporous membranes on the kinetics of oxygen consumption and ammonia elimination by adherent hepatocytes. <i>Journal of Biomaterials Science, Polymer Edition</i> , 1999 , 10, 641-55	3.5	41

(2015-2018)

526	Performance of ceramic membrane in vacuum membrane distillation and in vacuum membrane crystallization. <i>Desalination</i> , 2018 , 440, 48-58	10.3	40
525	Regulating Nucleation Kinetics through Molecular Interactions at the PolymerBolute Interface. <i>Crystal Growth and Design</i> , 2014 , 14, 678-686	3.5	40
524	Hygrothermal history dependence of equilibrium moisture sorption in epoxy resins. <i>Polymer</i> , 1981 , 22, 1064-1067	3.9	40
523	Toward the Next Generation of Sustainable Membranes from Green Chemistry Principles. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 50-75	8.3	40
522	ECTFE membrane fabrication via TIPS method using ATBC diluent for vacuum membrane distillation. <i>Desalination</i> , 2019 , 456, 13-22	10.3	39
521	From hydrophobic to hydrophilic polyvinylidenefluoride (PVDF) membranes by gaining new insight into material's properties. <i>RSC Advances</i> , 2015 , 5, 56219-56231	3.7	39
520	Thermodynamic modeling of brine and its use in membrane crystallizer. <i>Desalination</i> , 2013 , 323, 83-92	10.3	39
519	Hydrophobic membranes for salts recovery from desalination plants. <i>Desalination and Water Treatment</i> , 2010 , 18, 224-234		39
518	Effect of Supersaturation Control and Heterogeneous Nucleation on Porous Membrane Surfaces in the Crystallization of l-Glutamic Acid Polymorphs. <i>Crystal Growth and Design</i> , 2009 , 9, 2179-2186	3.5	39
517	Novel membranes and surface modification able to activate specific cellular responses. <i>New Biotechnology</i> , 2007 , 24, 23-6		39
516	Droplet detachment in cross-flow membrane emulsification: Comparison among torque- and force-based models. <i>Chemical Engineering and Processing: Process Intensification</i> , 2008 , 47, 1150-1158	3.7	39
515	Determination of Parameters Affecting Transport in Polymeric Membranes: Parallels between Pervaporation and Nanofiltration. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 13273-13279	3.4	39
514	Designing and optimization of continuous direct contact membrane distillation process. <i>Desalination</i> , 2018 , 426, 97-107	10.3	39
513	Process Intensification via Continuous and Simultaneous Isolation of Antioxidants: An Upcycling Approach for Olive Leaf Waste. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 18444-18452	8.3	38
512	Raw Juice Concentration by Osmotic Membrane Distillation Process with Hydrophobic Polymeric Membranes. <i>Food and Bioprocess Technology</i> , 2015 , 8, 2146-2158	5.1	38
511	Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance. <i>Separation and Purification Technology</i> , 2018 , 190, 68-76	8.3	38
510	Effect of polyphenols-membrane interactions on the performance of membrane-based processes. A review. <i>Coordination Chemistry Reviews</i> , 2017 , 351, 45-75	23.2	38
509	Treatment of Olive Mill Wastewater by Forward Osmosis. <i>Separation and Purification Technology</i> , 2015 , 147, 292-302	8.3	38

508	Process Intensification for greenhouse gas separation from biogas: More efficient process schemes based on membrane-integrated systems. <i>International Journal of Greenhouse Gas Control</i> , 2015 , 35, 18-2	2 9 .2	38	
507	Pd-based membrane reactors for one-stage process of water gas shift. <i>RSC Advances</i> , 2011 , 1, 651	3.7	38	
506	Preparation, characterization and use of PEEKWC nanofiltration membranes for removal of Azur B dye from aqueous media. <i>Reactive and Functional Polymers</i> , 2009 , 69, 259-263	4.6	38	
505	An innovative approach to improve the performance of a two separate phase enzyme membrane reactor by immobilizing lipase in presence of emulsion. <i>Journal of Membrane Science</i> , 2007 , 295, 95-101	9.6	38	
504	New modified polyetheretherketone membrane for liver cell culture in biohybrid systems: adhesion and specific functions of isolated hepatocytes. <i>Biomaterials</i> , 2004 , 25, 3621-9	15.6	38	
503	ANALYSIS OF THE FOULING MECHANISM IN MICROFILTRATION OF ORANGE JUICE. <i>Journal of Food Processing and Preservation</i> , 1996 , 20, 453-466	2.1	38	
502	Integrated Membrane Desalination Systems with Membrane Crystallization Units for Resource Recovery: A New Approach for Mining from the Sea. <i>Crystals</i> , 2016 , 6, 36	2.3	38	
501	Enhanced, hydrophobic, fluorine-containing, thermally rearranged (TR) nanofiber membranes for desalination via membrane distillation. <i>Journal of Membrane Science</i> , 2018 , 550, 545-553	9.6	38	
500	Thermally rearranged mixed matrix membranes for CO 2 separation: An aging study. <i>International Journal of Greenhouse Gas Control</i> , 2017 , 61, 16-26	4.2	37	
499	Multiwalled carbon nanotube membranes for water purification. <i>Separation and Purification Technology</i> , 2018 , 193, 378-385	8.3	37	
498	Preparation and characterization of ECTFE solvent resistant membranes and their application in pervaporation of toluene/water mixtures. <i>Separation and Purification Technology</i> , 2012 , 90, 147-161	8.3	37	
497	Knudsen and surface diffusion competing for gas permeation inside silicalite membranes. <i>Journal of Membrane Science</i> , 2017 , 523, 456-469	9.6	37	
496	Hydrophobic Ceramic Membranes for Water Desalination. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 402	2.6	37	
495	Membrane Engineering for Water Engineering. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 10051-10056	3.9	37	
494	Ultrafiltration of Clementine mandarin juice by hollow fibre membranes. <i>Desalination</i> , 2009 , 241, 302-30	08 0.3	37	
493	Effect of isoliquiritigenin on viability and differentiated functions of human hepatocytes maintained on PEEK-WC-polyurethane membranes. <i>Biomaterials</i> , 2005 , 26, 6625-34	15.6	37	
492	Thermodialysis of non-ideal aqueous solutions. An experimental study. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1979 , 75, 247		37	
491	Flux-enhanced Halumina tight ultrafiltration membranes for effective treatment of dye/salt wastewater at high temperatures. <i>Separation and Purification Technology</i> , 2019 , 215, 143-154	8.3	37	

(2008-2017)

490	Sorption and Diffusion of CO2/N2 in gas mixture in thermally-rearranged polymeric membranes: A molecular investigation. <i>Journal of Membrane Science</i> , 2017 , 528, 135-146	9.6	36
489	Membrane reactors for low temperature applications: An overview. <i>Chemical Engineering and Processing: Process Intensification</i> , 2018 , 124, 282-307	3.7	36
488	A fundamental study of the physicochemical properties of Rhodiasolv Polarclean: A promising alternative to common and hazardous solvents. <i>Journal of Molecular Liquids</i> , 2016 , 224, 1163-1171	6	36
4 ⁸ 7	PVDF-MFI mixed matrix membranes as VOCs adsorbers. <i>Microporous and Mesoporous Materials</i> , 2015 , 207, 126-133	5.3	36
486	Water droplets as template for next-generation self-assembled poly-(etheretherketone) with cardo membranes. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 10483-96	3.4	36
485	Theoretical analysis of the effect of catalyst mass distribution and operation parameters on the performance of a Pd-based membrane reactor for watergas shift reaction. <i>Chemical Engineering Journal</i> , 2008 , 136, 373-382	14.7	36
484	Hydrogen purification from carbon monoxide by means of selective oxidation using zeolite catalytic membranes. <i>Separation and Purification Technology</i> , 2008 , 62, 629-635	8.3	36
483	PEEKWC ultrafiltration hollow-fiber membranes: Preparation, morphology, and transport properties. <i>Journal of Applied Polymer Science</i> , 2004 , 91, 841-853	2.9	36
482	Use of stable emulsion to improve stability, activity, and enantioselectivity of lipase immobilized in a membrane reactor. <i>Biotechnology and Bioengineering</i> , 2003 , 84, 677-85	4.9	36
481	Mechanical behaviour and permeability of ABS/glass bead composites. <i>Polymer</i> , 1973 , 14, 21-26	3.9	36
480	Optimization of module length for continuous direct contact membrane distillation process. <i>Chemical Engineering and Processing: Process Intensification</i> , 2016 , 110, 188-200	3.7	35
479	Poly(ether sulfone) (PES) hollow-fiber membranes prepared from various spinning parameters. <i>Desalination</i> , 2014 , 345, 21-35	10.3	35
478	Development of a two separate phase submerged biocatalytic membrane reactor for the production of fatty acids and glycerol from residual vegetable oil streams. <i>Biomass and Bioenergy</i> , 2012 , 46, 574-583	5.3	35
477	Integrated Membrane Process for the Recovery of Chromium Salts from Tannery Effluents. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 6825-6830	3.9	35
476	The influence of the CO inhibition effect on the estimation of the H2 purification unit surface. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 4183-4192	6.7	35
475	Effect of module design and flow patterns on performance of membrane distillation process. <i>Chemical Engineering Journal</i> , 2015 , 277, 368-377	14.7	34
474	Inhibition by CO and polarization in Pd-based membranes: a novel permeation reduction coefficient. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 12264-76	3.4	34
473	Analyses of hydrodynamic resistances and operating parameters in the ultrafiltration of grape must. <i>Journal of Food Engineering</i> , 2008 , 89, 171-177	6	34

472	Design of an integrated membrane system for a high level hydrogen purification. <i>Chemical Engineering Journal</i> , 2006 , 124, 29-40	14.7	34
471	Quantitative analysis of coupling effects in cross-flow membrane emulsification. <i>Journal of Membrane Science</i> , 2004 , 229, 199-209	9.6	34
470	Membrane integrated system in the fusion reactor fuel cycle. <i>Catalysis Today</i> , 1995 , 25, 321-326	5.3	34
469	Study and Comparison of Two Enzyme Membrane Reactors for Fatty Acids and Glycerol Production. <i>Industrial & Engineering Chemistry Research</i> , 1994 , 33, 2591-2599	3.9	34
468	Waste Gaseous Streams: From Environmental Issue to Source of Water by Using Membrane Condensers. <i>Clean - Soil, Air, Water</i> , 2014 , 42, 1145-1153	1.6	33
467	Supported MFI zeolite membranes by cross flow filtration for water treatment. <i>Separation and Purification Technology</i> , 2014 , 137, 28-35	8.3	33
466	Water recovery from humidified waste gas streams: Quality control using membrane condenser technology. <i>Chemical Engineering and Processing: Process Intensification</i> , 2014 , 86, 196-203	3.7	33
465	Hydrophilic PEEK-WC hollow fibre membrane contactors for chromium (Vi) removal. <i>Desalination</i> , 2011 , 283, 16-24	10.3	33
464	Polymeric membranes modified via plasma for nanofiltration of aqueous solution containing organic compounds. <i>Microporous and Mesoporous Materials</i> , 2009 , 120, 147-153	5.3	33
463	Bergamot essential oil extraction by pervaporation. <i>Desalination</i> , 2006 , 193, 160-165	10.3	33
462			
402	Membrane crystallization of macromolecular solutions. <i>Desalination</i> , 2002 , 145, 173-177	10.3	33
461	Membrane crystallization of macromolecular solutions. <i>Desalination</i> , 2002 , 145, 173-177 Experimental study on integrated membrane processes in the treatment of solutions simulating textile effluents. Energy and exergy analysis. <i>Desalination</i> , 1990 , 78, 257-277		33
	Experimental study on integrated membrane processes in the treatment of solutions simulating	10.3	
461	Experimental study on integrated membrane processes in the treatment of solutions simulating textile effluents. Energy and exergy analysis. <i>Desalination</i> , 1990 , 78, 257-277 Scale-up of MFI zeolite membranes for desalination by vacuum membrane distillation. <i>Desalination</i> ,	10.3	33
461 460	Experimental study on integrated membrane processes in the treatment of solutions simulating textile effluents. Energy and exergy analysis. <i>Desalination</i> , 1990 , 78, 257-277 Scale-up of MFI zeolite membranes for desalination by vacuum membrane distillation. <i>Desalination</i> , 2016 , 397, 205-212 Sieverts law pressure exponent for hydrogen permeation through Pd-based membranes: Coupled influence of non-ideal diffusion and multicomponent external mass transfer. <i>International Journal</i>	10.3	33
461 460 459	Experimental study on integrated membrane processes in the treatment of solutions simulating textile effluents. Energy and exergy analysis. <i>Desalination</i> , 1990 , 78, 257-277 Scale-up of MFI zeolite membranes for desalination by vacuum membrane distillation. <i>Desalination</i> , 2016 , 397, 205-212 Sieverts law pressure exponent for hydrogen permeation through Pd-based membranes: Coupled influence of non-ideal diffusion and multicomponent external mass transfer. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 16229-16244 Lithium recovery from artificial brine using energy-efficient membrane distillation and	10.3	33 33 32
461 460 459 458	Experimental study on integrated membrane processes in the treatment of solutions simulating textile effluents. Energy and exergy analysis. <i>Desalination</i> , 1990 , 78, 257-277 Scale-up of MFI zeolite membranes for desalination by vacuum membrane distillation. <i>Desalination</i> , 2016 , 397, 205-212 Sieverts law pressure exponent for hydrogen permeation through Pd-based membranes: Coupled influence of non-ideal diffusion and multicomponent external mass transfer. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 16229-16244 Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. <i>Journal of Membrane Science</i> , 2020 , 598, 117683 Physicochemical characterization of solute retention in solvent resistant nanofiltration: the effect of solute size, polarity, dipole moment, and solubility parameter. <i>Journal of Physical Chemistry B</i> ,	10.3 10.3 6.7 9.6	33 33 32 32

(2012-2007)

454	Tuning of hollow fiber membrane properties using different bore fluids. <i>Journal of Membrane Science</i> , 2007 , 301, 11-18	9.6	31
453	Methodology for estimating saving of primary energy with membrane operations in industrial processes. <i>Desalination</i> , 1995 , 100, 125-137	10.3	31
452	Recovery of pyridine from aqueous solution by membrane pervaporation. <i>Journal of Membrane Science</i> , 1993 , 80, 309-318	9.6	31
45 ¹	Insight into fouling behavior of poly(vinylidene fluoride) (PVDF) hollow fiber membranes caused by dextran with different pore size distributions. <i>Chinese Journal of Chemical Engineering</i> , 2018 , 26, 268-2	77 ^{3.2}	31
450	Polyimide hollow fiber membranes for CO2 separation from wet gas mixtures. <i>Brazilian Journal of Chemical Engineering</i> , 2014 , 31, 1023-1034	1.7	30
449	Synthesis and characterization of a mordenite membrane on an EAl2O3 tubular support. <i>Journal of Materials Chemistry</i> , 2000 , 10, 1131-1137		30
448	Gas permeability of polyphosphazene membranes. Separation and Purification Technology, 1991, 5, 252	-258	30
447	Adsorption-assisted transport of water vapour in super-hydrophobic membranes filled with multilayer graphene platelets. <i>Nanoscale</i> , 2019 , 11, 11521-11529	7.7	29
446	Coupled influence of non-ideal diffusion and multilayer asymmetric porous supports on Sieverts law pressure exponent for hydrogen permeation in composite Pd-based membranes. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 2201-2214	6.7	29
445	Study of mass transfer performance of naproxen acid and ester through a multiphase enzyme-loaded membrane system. <i>Journal of Membrane Science</i> , 2006 , 276, 59-67	9.6	29
444	New performance of a modified poly(amide-12-b-ethyleneoxide). <i>Polymer</i> , 2003 , 44, 2149-2157	3.9	29
443	Preparation of oil-in-water emulsions using polyamide 10 kDa hollow fiber membrane. <i>Journal of Membrane Science</i> , 2003 , 217, 173-180	9.6	29
442	A novel modelling approach to surface and Knudsen multicomponent diffusion through NaY zeolite membranes. <i>Microporous and Mesoporous Materials</i> , 2016 , 235, 87-99	5.3	29
441	Membrane condenser configurations for water recovery from waste gases. <i>Separation and Purification Technology</i> , 2017 , 181, 60-68	8.3	28
440	Open-source predictive simulators for scale-up of direct contact membrane distillation modules for seawater desalination. <i>Desalination</i> , 2017 , 402, 72-87	10.3	28
439	Effect of selected spinning parameters on PVDF hollow fiber morphology for potential application in desalination by VMD. <i>Desalination</i> , 2014 , 344, 28-35	10.3	28
438	Pulsed back-and-forward cross-flow batch membrane emulsification with high productivity to obtain highly uniform and concentrate emulsions. <i>Journal of Membrane Science</i> , 2014 , 453, 119-125	9.6	28
437	From Tailored Supports to Controlled Nucleation: Exploring Material Chemistry, Surface Nanostructure, and Wetting Regime Effects in Heterogeneous Nucleation of Organic Molecules. Crystal Growth and Design, 2012 , 12, 3749-3757	3.5	28

436	H2 Separation From H2/N2 and H2/CO Mixtures with Co-Polyimide Hollow Fiber Module. <i>Separation Science and Technology</i> , 2010 , 46, 1-13	2.5	28
435	Poly(ether ether ketone) derivative membranes review of their preparation, properties and potential. <i>Polymer Science - Series A</i> , 2009 , 51, 1355-1366	1.2	28
434	Characteristics and performance of a "universal" membrane suitable for gas separation, pervaporation, and nanofiltration applications. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 13799-803	3.4	28
433	Temperature gradient affecting mass transport in synthetic membranes. <i>Journal of Membrane Science</i> , 1980 , 7, 169-183	9.6	28
432	Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment. <i>Environmental Engineering Research</i> , 2015 , 20, 307-328	3.6	28
431	Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation. <i>Journal of Membrane Science</i> , 2020 , 593, 117402	9.6	28
430	Enhanced starch hydrolysis using \(\text{\text{\text{\text{\text{membrane}}}}\) membrane. Carbohydrate Polymers, \(\text{\text{2016}}\), 152, 710-717	10.3	27
429	Effect of functional groups on the properties of multiwalled carbon nanotubes/polyvinylidenefluoride composite membranes. <i>Journal of Membrane Science</i> , 2017 , 541, 198	3-204	27
428	Neuroprotective effect of didymin on hydrogen peroxide-induced injury in the neuronal membrane system. <i>Cells Tissues Organs</i> , 2014 , 199, 184-200	2.1	27
427	Insights into the polymorphism of glycine: membrane crystallization in an electric field. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 9271-80	3.6	27
426	Fine Dosage of Antisolvent in the Crystallization of l-Histidine: Effect on Polymorphism. <i>Crystal Growth and Design</i> , 2010 , 10, 449-455	3.5	27
425	Catalytic Polymer Membranes under Forcing Conditions: Reduction of Nitrobenzene by CO/H2O Catalyzed by Ruthenium Bis(arylimino)acenaphthene Complexes. <i>ChemCatChem</i> , 2010 , 2, 1150-1164	5.2	27
424	An exergetic analysis of a membrane desalination system. <i>Desalination</i> , 2010 , 261, 293-299	10.3	27
423	New PVDF microcapsules for application in catalysis. <i>Applied Catalysis B: Environmental</i> , 2008 , 80, 185-1	1 9<u>4</u>1. 8	27
422	Ultra-thin asymmetric gas separation membranes of modified PEEK prepared by the drywet phase inversion technique. <i>Desalination</i> , 2006 , 193, 58-65	10.3	27
421	Ceramic nanofiltration and membrane distillation hybrid membrane processes for the purification and recycling of boric acid from simulative radioactive waste water. <i>Journal of Membrane Science</i> , 2019 , 579, 294-301	9.6	26
420	Multi-hydrophilic functional network enables porous membranes excellent anti-fouling performance for highly efficient water remediation. <i>Journal of Membrane Science</i> , 2020 , 608, 118191	9.6	26
419	Organic/organic mixture separation by using novel ECTFE polymeric pervaporation membranes. <i>Polymer</i> , 2016 , 98, 110-117	3.9	26

(2006-2018)

418	Bi2Se3-assisted membrane crystallization. <i>Materials Horizons</i> , 2018 , 5, 912-919	14.4	26
4 ¹ 7	Enzyme membrane reactor with heterogenized Eglucosidase to obtain phytotherapic compound: Optimization study. <i>Journal of Membrane Science</i> , 2012 , 390-391, 121-129	9.6	26
416	Poly(vinyl chloride) hollow-fiber membranes for ultrafiltration applications: Effects of the internal coagulant composition. <i>Journal of Applied Polymer Science</i> , 2012 , 124, 2087-2099	2.9	26
415	Competitive hydrogen-bonding interactions in modified polymer membranes: a density functional theory investigation. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 5473-7	3.4	26
414	Evaluation of pervaporation process of kiwifruit juice by SPME-GC/Ion Trap Mass Spectrometry. <i>Desalination</i> , 2010 , 250, 1113-1117	10.3	26
413	Human hepatocyte morphology and functions in a multibore fiber bioreactor. <i>Macromolecular Bioscience</i> , 2007 , 7, 671-80	5.5	26
412	Fetuin-A gene expression, synthesis and release in primary human hepatocytes cultured in a galactosylated membrane bioreactor. <i>Biomaterials</i> , 2007 , 28, 4836-44	15.6	26
411	Solvent free selective oxidation of benzyl alcohol to benzaldehyde using a membrane contactor unit. <i>Applied Catalysis B: Environmental</i> , 2008 , 79, 35-42	21.8	26
410	High-flux composite perfluorinated gas separation membranes of Hyflon AD on a hollow fibre ultrafiltration membrane support. <i>Desalination</i> , 2006 , 192, 207-213	10.3	26
409	Diffusion of gases in PEEKs membranes: molecular dynamics simulations. <i>Journal of Membrane Science</i> , 2002 , 206, 389-398	9.6	26
408	Removal and recovery of Ag(CN)2- from synthetic electroplating baths by polymer inclusion membrane containing Aliquat 336 as a carrier. <i>Chemical Engineering Journal</i> , 2016 , 295, 207-217	14.7	26
407	A non-invasive optical method for mapping temperature polarization in direct contact membrane distillation. <i>Journal of Membrane Science</i> , 2017 , 536, 156-166	9.6	25
406	Novel hybrid molecularly imprinted membranes for targeted 4,4?-methylendianiline. <i>Separation and Purification Technology</i> , 2013 , 116, 184-191	8.3	25
405	Hollow Fiber Ultrafiltration Membranes from Poly(Vinyl Chloride): Preparation, Morphologies, and Properties. <i>Separation Science and Technology</i> , 2011 , 46, 2199-2210	2.5	25
404	Catalysis in polymeric membrane reactors: the membrane role. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2010 , 5, 26-34	1.3	25
403	Preparation and characterization of high-performance dehydrating pervaporation alginate membranes. <i>Journal of Applied Polymer Science</i> , 1998 , 68, 959-968	2.9	25
402	Catalytic (Pt-Y) membranes for the purification of H2-rich streams. Catalysis Today, 2006, 118, 90-97	5.3	25
401	Membrane bioreactor for cell tissues and organoids. <i>Artificial Organs</i> , 2006 , 30, 793-802	2.6	25

400	Controlled pore size, thickness and surface free energy of super-hydrophobic PVDF and Hyflon AD membranes. <i>Desalination</i> , 2006 , 200, 26-28	10.3	25
399	Novel PEEK-WC membranes with low plasma protein affinity related to surface free energy parameters. <i>Journal of Materials Science: Materials in Medicine</i> , 2004 , 15, 877-83	4.5	25
398	Membrane separation technologies: their application to the fusion reactor fuel cycle. <i>Fusion Engineering and Design</i> , 1993 , 22, 257-263	1.7	25
397	Diffusion-controlled penetration of polymethyl methacrylate sheets by monohydric normal alcohols. <i>Journal of Membrane Science</i> , 1978 , 3, 231-245	9.6	25
396	An ultrathin suspended hydrophobic porous membrane for high-efficiency water desalination. <i>Applied Materials Today</i> , 2017 , 9, 1-9	6.6	24
395	Membrane Operations for Process Intensification in Desalination. <i>Applied Sciences (Switzerland</i>), 2017 , 7, 100	2.6	24
394	Ultrafiltration of orange press liquor: Optimization of operating conditions for the recovery of antioxidant compounds by response surface methodology. <i>Separation and Purification Technology</i> , 2012 , 98, 255-261	8.3	24
393	Biodegradable and synthetic membranes for the expansion and functional differentiation of rat embryonic liver cells. <i>Acta Biomaterialia</i> , 2011 , 7, 171-9	10.8	24
392	High-definition polymeric membranes: construction of 3D lithographed channel arrays through control of natural building blocks dynamics. <i>ACS Applied Materials & amp; Interfaces</i> , 2010 , 2, 459-66	9.5	24
391	Biocatalytic membrane reactor and membrane emulsification concepts combined in a single unit to assist production and separation of water unstable reaction products. <i>Journal of Membrane Science</i> , 2010 , 352, 166-172	9.6	24
390	Study of Fouling Phenomena in Apple Juice Clarification by Enzyme Membrane Reactor. <i>Separation Science and Technology</i> , 1998 , 33, 739-756	2.5	24
389	PEEKWC Capsules Prepared by Phase Inversion Technique: A Morphological and Dimensional Study. <i>Separation Science and Technology</i> , 2007 , 42, 2809-2827	2.5	24
388	Study of a hybrid process combining PACs and membrane operations for antibiotic wastewater treatment. <i>Desalination</i> , 2006 , 194, 101-107	10.3	24
387	Generation of PEEK-WC membranes by supercritical fluids. <i>Desalination</i> , 2006 , 200, 58-60	10.3	24
386	Immunolocalization of Eglucosidase immobilized within polysulphone capillary membrane and evaluation of its activity in situ. <i>Journal of Membrane Science</i> , 2006 , 285, 152-158	9.6	24
385	Transport of steroids in poly(etherurethane) and poly(ethylene vinyl acetate) membranes. <i>Journal of Membrane Science</i> , 1985 , 24, 125-143	9.6	24
384	Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application. <i>Recent Patents on Nanotechnology</i> , 2016 , 10, 231-251	1.2	24
383	CO2 conversion in a photocatalytic continuous membrane reactor. <i>RSC Advances</i> , 2016 , 6, 67418-67427	3.7	24

(2005-2016)

382	Preparation and characterization of PES-cobalt nanocomposite membranes with enhanced anti-fouling properties and performances. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2016 , 65, 405-419	5.3	24
381	Optimization of novel composite membranes for water and mineral recovery by vacuum membrane distillation. <i>Desalination</i> , 2018 , 440, 39-47	10.3	24
380	Novel Photocatalytic PVDF/Nano-TiO[Hollow Fibers for Environmental Remediation. <i>Polymers</i> , 2018 , 10,	4.5	24
379	Neuroprotective effect of human mesenchymal stem cells in a compartmentalized neuronal membrane system. <i>Acta Biomaterialia</i> , 2015 , 24, 297-308	10.8	23
378	Photocatalytic properties of PVDF membranes modified with g-C3N4 in the process of Rhodamines decomposition. <i>Separation and Purification Technology</i> , 2020 , 250, 117231	8.3	23
377	New approach for the evaluation of membranes transport properties for polymer electrolyte membrane fuel cells. <i>Journal of Power Sources</i> , 2012 , 205, 222-230	8.9	23
376	Modeling the performance of flat and capillary membrane modules in vacuum membrane distillation. <i>Journal of Membrane Science</i> , 2013 , 447, 369-375	9.6	23
375	Process Intensification by Membrane Reactors: High-Temperature Water Gas Shift Reaction as Single Stage for Syngas Upgrading. <i>Chemical Engineering and Technology</i> , 2012 , 35, 1238-1248	2	23
374	Investigation on the effects of a mechanical shear-stress modification method during cross-flow membrane emulsification. <i>Journal of Membrane Science</i> , 2011 , 371, 28-36	9.6	23
373	Energetics of protein nucleation on rough polymeric surfaces. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 13650-5	3.4	23
372	Interactive functional poly(vinylidene fluoride) membranes with modulated lysozyme affinity: a promising class of new interfaces for contactor crystallizers. <i>Polymer International</i> , 2009 , 58, 1452-1464	3.3	23
371	Human hepatocyte functions in a galactosylated membrane bioreactor. <i>Journal of Membrane Science</i> , 2007 , 302, 27-35	9.6	23
370	Membrane emulsification as a novel method to distribute phase-transfer biocatalysts at the oil/water interface in bioorganic reactions. <i>Journal of Membrane Science</i> , 2008 , 317, 19-25	9.6	23
369	The dry phase inversion technique as a tool to produce highly efficient asymmetric gas separation membranes of modified PEEK. Influence of temperature and air circulation. <i>Desalination</i> , 2006 , 192, 132	2-1943	23
368	Force balance conditions for droplet formation in cross-flow membrane emulsifications. <i>Journal of Colloid and Interface Science</i> , 2006 , 294, 436-48	9.3	23
367	Study of the surface character as responsible for controlling interfacial forces at membrane-feed interface. <i>Journal of Colloid and Interface Science</i> , 2006 , 303, 388-403	9.3	23
366	Role of additives in the water vapor transport through block co-poly(amide/ether) membranes: effects on surface and bulk polymer properties. <i>European Polymer Journal</i> , 2004 , 40, 2381-2389	5.2	23
365	Rheological evaluation of the influence of polymer concentration and molar mass distribution on the formation and performance of asymmetric gas separation membranes prepared by dry phase inversion. <i>Polymer</i> , 2005 , 46, 11366-11379	3.9	23

364	Evaluation of CO2 permeation through functional assembled mono-layers: Relationships between structure and transport. <i>Polymer</i> , 2005 , 46, 9994-10003	3.9	23	
363	Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process. <i>Applied Energy</i> , 2017 , 199, 359-369	10.7	22	
362	Assessment of air-gap membrane distillation with hydrophobic porous membranes utilized for damaged paintings humidification. <i>Journal of Membrane Science</i> , 2017 , 538, 1-8	9.6	22	
361	Neuronal growth and differentiation on biodegradable membranes. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2015 , 9, 106-17	4.4	22	
360	Implementation of osmotic membrane distillation with various hydrophobic porous membranes for concentration of sugars solutions and preservation of the quality of cactus pear juice. <i>Journal of Food Engineering</i> , 2018 , 230, 28-38	6	22	
359	Concentration polarization distribution along Pd-based membrane reactors: A modelling approach applied to Water-Gas Shift. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 2660-2670	6.7	22	
358	An alternative encapsulation approach for production of active chitosan propolis beads. <i>International Journal of Food Science and Technology</i> , 2014 , 49, 1401-1407	3.8	22	
357	Membrane materials for addressing energy and environmental challenges. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2012 , 3, 395-420	8.9	22	
356	Effect of polymer composition in PEEKWC/PVP blends on pervaporation separation of ethanol/cyclohexane mixture. <i>Separation and Purification Technology</i> , 2010 , 75, 257-265	8.3	22	
355	Evaluation of membrane reactor with hydrogen-selective membrane in methane steam reforming. <i>Chemical Engineering Science</i> , 2010 , 65, 1159-1166	4.4	22	
354	Methanol as an Energy Source and/or Energy Carrier in Membrane Processes. <i>Separation and Purification Reviews</i> , 2007 , 36, 175-202	7.3	22	
353	Heterogenization of ruthenium porphyrin complexes in polymeric membranes: Catalytic aziridination of styrenes. <i>Journal of Molecular Catalysis A</i> , 2008 , 282, 85-91		22	
352	Intermolecular interactions as controlling factor for water sorption into polymer membranes. Journal of Physical Chemistry B, 2007 , 111, 8868-78	3.4	22	
351	Membrane air separation for intensification of coal gasification process. <i>Fuel Processing Technology</i> , 2003 , 80, 119-141	7.2	22	
350	Effects of organic solvents on ultrafiltration polyamide membranes for the preparation of oil-in-water emulsions. <i>Journal of Colloid and Interface Science</i> , 2005 , 287, 612-23	9.3	22	
349	Polyphosphazene membrane separations R eview. <i>Journal of Inorganic and Organometallic Polymers</i> , 1996 , 6, 341-365		22	
348	Protein ultrafiltration: an experimental study. <i>Journal of Applied Polymer Science</i> , 1975 , 19, 1639-1647	2.9	22	
347	A novel thermal spraying technique to fabricate fly ash/alumina composite membranes for oily emulsion and spent tin wastewater treatment. <i>Separation and Purification Technology</i> , 2019 , 219, 127-1	3 ⁸ 6 ³	22	

346	Lithium dedicated adsorbent for the preparation of electrodes useful in the ion pumping method. <i>Separation and Purification Technology</i> , 2018 , 194, 231-238	8.3	22
345	Testing of three different PVDF membranes in membrane assisted-crystallization process: Influence of membrane structural-properties on process performance. <i>Desalination</i> , 2018 , 440, 68-77	10.3	21
344	Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition. <i>Membranes</i> , 2018 , 8,	3.8	21
343	As(III) oxidation by MnO2 coated PEEK-WC nanostructured capsules. <i>Journal of Hazardous Materials</i> , 2012 , 211-212, 281-7	12.8	21
342	Dewatering of 2,2,3,3-tetrafluoropropan-1-ol by hydrophilic pervaporation with poly(vinyl alcohol) based PervapImembranes. <i>Separation and Purification Technology</i> , 2017 , 174, 520-528	8.3	21
341	Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment. <i>Fibers</i> , 2017 , 5, 14	3.7	21
340	Medium/high temperature water gas shift reaction in a PdAg membrane reactor: an experimental investigation. <i>RSC Advances</i> , 2012 , 2, 226-233	3.7	21
339	Study on the in Situ Enzymatic Self-Cleansing of Microfiltration Membrane for Valorization of Olive Mill Wastewater. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 10396-10405	3.9	21
338	Pd-Based Membrane Reactor for Syngas Upgrading. Energy & Samp; Fuels, 2009, 23, 5073-5076	4.1	21
337	Experimental and theoretical investigation of a new air gap membrane distillation module with a corrugated feed channel. <i>Journal of Membrane Science</i> , 2020 , 594, 117461	9.6	21
336	Continuous production of bioethanol from sugarcane bagasse and downstream purification using membrane integrated bioreactor. <i>Catalysis Today</i> , 2019 , 331, 68-77	5.3	21
335	A review of membrane crystallization, forward osmosis and membrane capacitive deionization for liquid mining. <i>Resources, Conservation and Recycling</i> , 2021 , 168, 105273	11.9	21
334	Membrane operations for produced water treatment. Desalination and Water Treatment, 2016, 57, 143	17-143	33 <u>5</u> 0
333	Estimation of Langmuir and Sips Models Adsorption Parameters for NaX and NaY FAU Zeolites. Journal of Chemical & Data, 2015, 60, 2858-2868	2.8	20
332	The stability of a graphene oxide (GO) nanofiltration (NF) membrane in an aqueous environment: progress and challenges. <i>Materials Advances</i> , 2020 , 1, 554-568	3.3	20
331	Enhancing membrane performance in removal of hazardous VOCs from water by modified fluorinated PVDF porous material. <i>Journal of Membrane Science</i> , 2018 , 556, 214-226	9.6	2 0
330	Hybrid imprinted membranes for selective recognition of quercetin. <i>Separation and Purification Technology</i> , 2016 , 163, 331-340	8.3	20
329	Discrimination among gas translation, surface and Knudsen diffusion in permeation through zeolite membranes. <i>Journal of Membrane Science</i> , 2018 , 564, 166-173	9.6	20

328	Sulphonated poly (glycidyl methacrylate) grafted cellophane membranes: novel application in polyelectrolyte membrane fuel cell (PEMFC). <i>Journal of Polymer Research</i> , 2013 , 20, 1	2.7	20
327	Enhancing mechanical and photocatalytic performances on TiO2/Ti composite ultrafiltration membranes via Ag doping method. <i>Separation and Purification Technology</i> , 2015 , 145, 29-38	8.3	20
326	Distinct alpha subunits of the GABAA receptor are responsible for early hippocampal silent neuron-related activities. <i>Hippocampus</i> , 2009 , 19, 1103-14	3.5	20
325	Experimental and economical evaluation of a membrane crystallizer plant. <i>Desalination and Water Treatment</i> , 2009 , 9, 49-53		20
324	A PEMFC and H2 membrane purification integrated plant. <i>Chemical Engineering and Processing: Process Intensification</i> , 2008 , 47, 1081-1089	3.7	20
323	Ti(IV)/trialkanolamine catalytic polymeric membranes: Preparation, characterization, and use in oxygen transfer reactions. <i>Journal of Catalysis</i> , 2006 , 238, 221-231	7.3	20
322	Human lymphocyte PEEK-WC hollow fiber membrane bioreactor. <i>Journal of Biotechnology</i> , 2007 , 132, 65-74	3.7	20
321	Preparation of Enzyme Crystals with Tunable Morphology in Membrane Crystallizers. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 10005-10012	3.9	20
320	Effect of immobilization site and membrane materials on multiphasic enantiocatalytic enzyme membrane reactors. <i>Annals of the New York Academy of Sciences</i> , 2003 , 984, 436-52	6.5	20
319	Effects of orientation on the penetration, crazing, and dissolution of polystyrene by n-hexane. <i>Polymer</i> , 1979 , 20, 459-464	3.9	20
318	Enhanced fouling and wetting resistance of composite Hyflon AD/poly(vinylidene fluoride) membrane in vacuum membrane distillation. <i>Separation and Purification Technology</i> , 2019 , 211, 135-140) ^{8.3}	20
317	Treatment of Flue Gas Desulfurization Wastewater by an Integrated Membrane-Based Process for Approaching Zero Liquid Discharge. <i>Membranes</i> , 2018 , 8,	3.8	20
316	Neuronal membrane bioreactor as a tool for testing crocin neuroprotective effect in Alzheimer disease. <i>Chemical Engineering Journal</i> , 2016 , 305, 69-78	14.7	19
315	The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation. <i>Journal of Industrial and Engineering Chemistry</i> , 2012 , 18, 205-211	6.3	19
314	Polymeric hydrophobic membranes as a tool to control polymorphism and protein[Igand interactions. <i>Journal of Membrane Science</i> , 2006 , 283, 123-132	9.6	19
313	Facilitated co-transport of Ag(I), Cu(II), and Zn(II) ions by using a crown ether as carrier: influence of the SLM preparation method on ions flux. <i>Separation Science and Technology</i> , 2002 , 37, 2317-2336	2.5	19
312	High-temperature immobilized-cell ultrafiltration reactors. <i>Journal of Membrane Science</i> , 1982 , 11, 365-	3 <i>3</i> .6	19
311	Activity of acid phosphate as a gel layer on an ultrafiltration cellulose acetate membrane. <i>Biotechnology and Bioengineering</i> , 1975 , 17, 1365-1367	4.9	19

(2013-2016)

310	Crystallization and assembling of FAU nanozeolites on porous ceramic supports for zeolite membrane synthesis. <i>Microporous and Mesoporous Materials</i> , 2016 , 228, 141-146	5.3	19	
309	Functional groups docking on PVDF membranes: Novel Piranha approach. <i>European Polymer Journal</i> , 2017 , 96, 414-428	5.2	18	
308	Study of the separation properties of FAU membranes constituted by hierarchically assembled nanozeolites. <i>Separation and Purification Technology</i> , 2015 , 156, 321-327	8.3	18	
307	ECTFE membranes produced by non-toxic diluents for organic solvent filtration separation. <i>RSC Advances</i> , 2016 , 6, 81001-81012	3.7	18	
306	Application of ionic liquid polymeric microsphere in oil field scale control process. <i>Journal of Petroleum Science and Engineering</i> , 2013 , 112, 69-77	4.4	18	
305	Preparation and characterization of ionic liquid polymer microspheres [PEEKWC/DMF/CYPHOS IL 101] using the phase-inversion technique. <i>Separation and Purification Technology</i> , 2012 , 97, 179-185	8.3	18	
304	Preparation of molecularly imprinted membranes and evaluation of their performance in the selective recognition of dimethoate. <i>Desalination and Water Treatment</i> , 2011 , 30, 171-177		18	
303	On the cause of controlling affinity to small molecules of imprinted polymeric membranes prepared by noncovalent approach: a computational and experimental investigation. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 9345-51	3.4	18	
302	The role of membrane distillation/crystallization technologies in the integrated membrane system for seawater desalination. <i>Desalination and Water Treatment</i> , 2009 , 10, 210-219		18	
301	From homogeneously to heterogeneously catalyzed cyclopropanation reactions: New polymeric membranes embedding cobalt chiral schiff base complexes. <i>Journal of Molecular Catalysis A</i> , 2010 , 317, 72-80		18	
300	Combined emulsion and phase inversion techniques for the preparation of catalytic PVDF microcapsules. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 11264-9	3.4	18	
299	Membrane bioreactors for biotechnology and medical applications. <i>Membrane Science and Technology</i> , 2003 , 8, 187-217		18	
298	Applications of membrane unit operations in ethylene process. <i>Clean Technologies and Environmental Policy</i> , 2004 , 6, 78-95	4.3	18	
297	Theoretical and experimental analysis of a hybrid bioartificial membrane pancreas: a distributed parameter model taking into account starling fluxes. <i>Journal of Membrane Science</i> , 1990 , 52, 351-378	9.6	18	
296	Mutual influence of mixed-gas permeation in thermally rearranged poly(benzoxazole-co-imide) polymer membranes. <i>Journal of Membrane Science</i> , 2019 , 580, 202-213	9.6	17	
295	Low temperature synthesis of nanosized NaY zeolite crystals from organic-free gel by using supported seeds. <i>RSC Advances</i> , 2014 , 4, 21951-21957	3.7	17	
294	Energy and mass intensities in hydrogen upgrading by a membrane reactor. <i>Fuel Processing Technology</i> , 2014 , 118, 278-286	7.2	17	
293	Polymeric microspheres preparation by membrane emulsification-phase separation induced process. <i>Journal of Membrane Science</i> , 2013 , 448, 190-197	9.6	17	

292	Human lymphocytes cultured in 3-D bioreactors: influence of configuration on metabolite transport and reactions. <i>Biomaterials</i> , 2012 , 33, 8296-303	15.6	17
291	A Membrane-Based Process for the Valorization of the Bergamot Juice. <i>Separation Science and Technology</i> , 2013 , 48, 537-546	2.5	17
290	Direct production of carbamazepineBaccharin cocrystals from water/ethanol solvent mixtures by membrane-based crystallization technology. <i>CrystEngComm</i> , 2011 , 13, 5670	3.3	17
289	Direct Oxidation of Cyclohexene with Inert Polymeric Membrane Reactor. <i>Organic Process Research and Development</i> , 2010 , 14, 252-258	3.9	17
288	Polarization phenomena in integrated reverse osmosis and membrane distillation for seawater desalination and waste water treatment. <i>Desalination</i> , 1997 , 108, 81-82	10.3	17
287	ECyclodextrin interactions with three drugs used in inflammatory pathologies: An experimental and theoretical study. <i>Chemical Physics Letters</i> , 2008 , 454, 374-381	2.5	17
286	Ti(IV)-based catalytic membranes for efficient and selective oxidation of secondary amines. <i>Tetrahedron Letters</i> , 2004 , 45, 7515-7518	2	17
285	Effect of thiourea on the facilitated transport of silver and copper using a crown ether as carrier. <i>Separation and Purification Technology</i> , 2001 , 22-23, 571-581	8.3	17
284	Saving of Water and Chemicals in Tanning Industry by Membrane Processes. <i>Water Science and Technology</i> , 1999 , 40, 443	2.2	17
283	Self-diffusion measurements of organic molecules in PDMS and water in sodium alginate membranes. <i>Journal of Applied Polymer Science</i> , 1999 , 74, 1119-1128	2.9	17
282	In situ restoring of aged thermally rearranged gas separation membranes. <i>Journal of Membrane Science</i> , 2016 , 520, 671-678	9.6	17
281	Perspectives on mining from sea and other alternative strategies for minerals and water recovery The development of novel membrane operations. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2019 , 94, 129-134	5.3	17
280	Microtube array membrane bioreactor promotes neuronal differentiation and orientation. <i>Biofabrication</i> , 2017 , 9, 025018	10.5	16
279	Driving force and activation energy in air-gap membrane distillation process. <i>Chemical Papers</i> , 2015 , 69,	1.9	16
278	Development of mixed matrix membranes for controlled release of ibuprofen. <i>Journal of Applied Polymer Science</i> , 2013 , 128, 754-760	2.9	16
277	Preparation of Crack-Free Nanocomposite Ceramic Membrane Intermediate Layers on 🗟 lumina Tubular Supports. <i>Separation Science and Technology</i> , 2013 , 48, 1930-1940	2.5	16
276	Polymeric homogeneous composite membranes for separations in organic solvents. <i>Journal of Applied Polymer Science</i> , 2013 , 129, 1653-1659	2.9	16
275	Flat and tubular membrane systems for the reconstruction of hippocampal neuronal network. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 299-313	4.4	16

(1988-2007)

274	Influence of OR ester group length on the catalytic activity and enantioselectivity of free lipase and immobilized in membrane used for the kinetic resolution of naproxen esters. <i>Journal of Catalysis</i> , 2007 , 247, 194-200	7.3	16	
273	Thermophylic microbial cells immobilized in cellulose acetate membranes. <i>Biochimie</i> , 1980 , 62, 517-22	4.6	16	
272	Ultrafiltration processing with enzyme-gel composite membranes. <i>Journal of Membrane Science</i> , 1976 , 1, 237-248	9.6	16	
271	CO2/CH4 separation by means of Matrimid hollow fibre membranes. <i>Applied Petrochemical Research</i> , 2016 , 6, 439-450	1.9	16	
270	Improved antifouling properties of polyethersulfone membranes modified with ⊞mylase entrapped in Tetronic micelles. <i>Journal of Membrane Science</i> , 2019 , 570-571, 436-444	9.6	16	
269	Fabrication of PDMS based membranes with improved separation efficiency in hydrophobic pervaporation. <i>Separation and Purification Technology</i> , 2020 , 234, 116092	8.3	16	
268	From nanoscale modification to separation - The role of substrate and modifiers in the transport properties of ceramic membranes in membrane distillation. <i>Journal of Membrane Science</i> , 2019 , 580, 296-306	9.6	15	
267	Preparation and characterization of novel grafted cellophane-phosphoric acid-doped membranes for proton exchange membrane fuel-cell applications. <i>Journal of Applied Polymer Science</i> , 2012 , 123, 3710-3724	2.9	15	
266	Membrane Reactors: Advanced Systems for Intensified Chemical Processes. <i>Chemie-Ingenieur-Technik</i> , 2014 , 86, 2039-2050	0.8	15	
265	Assembly of nanocomposite PEBAX membranes: A complementary study of affinity and clusterization phenomena. <i>Journal of Membrane Science</i> , 2012 , 421-422, 75-84	9.6	15	
264	Bio-hybrid organs and tissues for patient therapy: A future vision for 2030. <i>Chemical Engineering and Processing: Process Intensification</i> , 2012 , 51, 79-87	3.7	15	
263	Surface Functionalization of PVDF Membrane with a Naringin-Imprinted Polymer Layer Using Photo-Polymerization Method. <i>Separation Science and Technology</i> , 2011 , 46, 1555-1562	2.5	15	
262	A translational approach to micro-inflammation in end-stage renal disease: molecular effects of low levels of interleukin-6. <i>Clinical Science</i> , 2010 , 119, 163-74	6.5	15	
261	Catalytic Membranes and Membrane Reactors: An Integrated Approach to Catalytic Process with a High Efficiency and a Low Environmental Impact. <i>Chinese Journal of Catalysis</i> , 2008 , 29, 1152-1158	11.3	15	
260	Polyethersulfone membrane biohybrid system using pig hepatocytes: Effect of diclofenac on cell biotransformation and synthetic functions. <i>Journal of Membrane Science</i> , 2006 , 278, 133-143	9.6	15	
259	Recovery and recycle of tannins in the leather industry by nanofiltration membranes. <i>Journal of Chemical Technology and Biotechnology</i> , 2004 , 79, 361-368	3.5	15	
258	Modelization of the transport of silver and copper in acidic thiourea medium through a supported liquid membrane. <i>Desalination</i> , 2001 , 139, 317-325	10.3	15	
257	Membrane reactor in fatty acid production. <i>Journal of Membrane Science</i> , 1988 , 36, 525-534	9.6	15	

256	Separation by thermodialysis of acetic acid aqueous solutions. <i>Canadian Journal of Chemical Engineering</i> , 1978 , 56, 698-704	2.3	15
255	Study of the performance of a membrane-based vacuum drying process. <i>Separation and Purification Technology</i> , 2016 , 158, 259-265	8.3	15
254	Improving efficiency of PVDF membranes for recovering water from humidified gas streams through membrane condenser. <i>Chemical Engineering Science</i> , 2019 , 210, 115234	4.4	14
253	A comparative analysis of flat sheet and capillary membranes for membrane distillation applications. <i>Desalination</i> , 2019 , 456, 1-12	10.3	14
252	Novel chemical modification of polyvinyl chloride membrane by free radical graft copolymerization for direct contact membrane distillation (DCMD) application. <i>Journal of Membrane Science</i> , 2020 , 611, 118266	9.6	14
251	Vacuum Membrane Dryer (VMDr) for the recovery of solid microparticles from aqueous solutions. <i>Journal of Membrane Science</i> , 2014 , 472, 67-76	9.6	14
250	Influence of the preparation conditions on the properties of polymeric and hybrid cation exchange membranes. <i>Electrochimica Acta</i> , 2012 , 66, 164-172	6.7	14
249	Polymeric membranes with antioxidant activity based on cellulose esters and poly(vinylidene fluoride)/cellulose ester blends. <i>Cellulose</i> , 2011 , 18, 359-370	5.5	14
248	Molecularly Imprinted Membranes with Affinity Properties for Folic Acid. <i>Separation Science and Technology</i> , 2010 , 45, 2273-2279	2.5	14
247	Integrated membrane system for pure hydrogen production: A PdAg membrane reactor and a PEMFC. Fuel Processing Technology, 2011 , 92, 166-174	7.2	14
246	Galactose derivative immobilized glow discharge processed polyethersulfone membranes maintain the liver cell metabolic activity. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 2344-53	1.3	14
245	Enzyme-assisted pervaporative recovery of concentrated bergamot peel oils. <i>Desalination</i> , 2006 , 199, 111-112	10.3	14
244	H2 for PEM-FC: effect of CO in the purification by means of Pd-based membranes. <i>Desalination</i> , 2006 , 200, 239-241	10.3	14
243	Selective oxidation of propane on Nafion/PEEK-WC catalytic membranes in a multifunctional reaction system. <i>Catalysis Today</i> , 2006 , 118, 253-258	5.3	14
242	New HYFLON AD composite membranes and AFM characterization. <i>Desalination</i> , 2004 , 163, 127-136	10.3	14
241	Preparation of Polymeric Membranes Entrapping Ecyclodextrins and Their Molecular Recognition of Naringin. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2003 , 47, 33-37		14
240	Experimental Evaluation of the Thermal Polarization in Direct Contact Membrane Distillation Using Electrospun Nanofiber Membranes Doped With Molecular Probes. <i>Molecules</i> , 2019 , 24,	4.8	14
239	Membrane applications for biogas production and purification processes: an overview on a smart alternative for process intensification. <i>RSC Advances</i> , 2015 , 5, 14156-14186	3.7	13

(2015-2020)

238	Biomimetic hybrid membranes with covalently anchored chitosan [Material design, transport and separation. <i>Desalination</i> , 2020 , 491, 114550	10.3	13
237	Effect of Green Solvents in the Production of PVDF-Specific Polymorphs. <i>Industrial &</i> Engineering Chemistry Research, 2020 , 59, 5267-5275	3.9	13
236	Gas permeable membrane bioreactor for the co-culture of human skin derived mesenchymal stem cells with hepatocytes and endothelial cells. <i>Journal of Membrane Science</i> , 2018 , 563, 694-707	9.6	13
235	Preparation of uniform poly-caprolactone Microparticles by membrane emulsification/solvent diffusion process. <i>Journal of Membrane Science</i> , 2014 , 467, 262-268	9.6	13
234	Membrane Bioreactor for Expansion and Differentiation of Embryonic Liver Cells. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 10387-10395	3.9	13
233	Submerged Membrane Bioreactor (SMBR) for Treatment of Textile Dye Wastewatertowards Developing Novel MBR Process. <i>APCBEE Procedia</i> , 2013 , 5, 259-264		13
232	Environment-benign preparation of Ag toughening TiO2/Ti tight ultrafiltration membrane via aqueous solgel route. <i>Journal of Materials Science</i> , 2015 , 50, 5307-5317	4.3	13
231	Soft segmental effect of methylene bis(p-cyclohexyl isocyanate) based thermoplastic polyurethane impregnated with lithium perchlorate/propylene carbonate on ionic conductivity. <i>Journal of Applied Polymer Science</i> , 2001 , 80, 935-942	2.9	13
230	FACILITATED COTRANSPORT OF Ag(I), Cu(II), AND Zn(II) IONS BY DB18C6 AND DA18C6 CROWN ETHERS AS CARRIERS: INTERFACE BEHAVIOR ON ION TRANSPORT. <i>Separation Science and Technology</i> , 2001 , 36, 2293-2308	2.5	13
229	Catalytic ceramic membrane reactor design for hydrogen separation from inert gas via oxidation. Journal of Membrane Science, 1995 , 104, 11-17	9.6	13
228	Composite catalytic membrane reactor analysis for the water gas shift reaction in the tritium fusion fuel cycle. <i>Fusion Engineering and Design</i> , 1995 , 30, 217-223	1.7	13
227	High-temperature membrane-entrapped cells. <i>Biotechnology and Bioengineering</i> , 1981 , 23, 221-223	4.9	13
226	Membrane engineering progresses in desalination and water reuse. <i>Membrane Water Treatment</i> , 2010 , 1, 75-81		13
225	Zirconium dioxide membranes decorated by silanes based-modifiers for membrane distillation [] Material chemistry approach. <i>Journal of Membrane Science</i> , 2020 , 596, 117597	9.6	13
224	Description of the diffusiveBonvective mass transport in a hollow-fiber biphasic biocatalytic membrane reactor. <i>Journal of Membrane Science</i> , 2015 , 482, 144-157	9.6	12
223	Tailoring PES membrane morphology and properties via selected preparation parameters. <i>Journal of Polymer Engineering</i> , 2017 , 37, 69-81	1.4	12
222	Evaluation of pure-component adsorption properties of silicalite based on the Langmuir and Sips models. <i>AICHE Journal</i> , 2015 , 61, 3911-3922	3.6	12
221	Integrated carboxylic carbon nanotube pathways with membranes for voltage-activated humidity detection and microclimate regulation. <i>Soft Matter</i> , 2015 , 11, 4461-8	3.6	12

220	Selecting the Desired Solid Form by Membrane Crystallizers: Crystals or Cocrystals. <i>Crystal Growth and Design</i> , 2012 , 12, 4349-4356	3.5	12
219	Pure and Modified Co-Poly(amide-12-b-ethylene oxide) Membranes for Gas Separation Studied by Molecular Investigations. <i>Membranes</i> , 2012 , 2, 346-66	3.8	12
218	Benzyl Alcohol Oxidation to Benzaldehyde in Multiphase Membrane Reactor. <i>Organic Process Research and Development</i> , 2008 , 12, 982-988	3.9	12
217	Analysis of safety aspects in a membrane reactor. <i>Desalination</i> , 2006 , 193, 267-279	10.3	12
216	Gusev and Suter calculation of the diffusion coefficients of light gases in silicalite-1 membrane and silica-sodalite zeolite. <i>Separation and Purification Technology</i> , 2004 , 36, 215-228	8.3	12
215	Human plasma ultrafiltrate purification by membrane distillation: process optimisation and evaluation of its possible application on-line. <i>Desalination</i> , 2002 , 147, 147-148	10.3	12
214	Transport parameters of carbon dioxide in poly(etheretherketone) membranes. <i>Journal of Membrane Science</i> , 1996 , 113, 121-129	9.6	12
213	Thermal transitions in cold-crystallized blends of isotactic and static polystyrene. <i>Polymer</i> , 1979 , 20, 57	I-\$J6	12
212	Whole cell immobilization in polyurethane structural foam. <i>Journal of Molecular Catalysis</i> , 1982 , 14, 247	-251	12
211	Concentration polarization and solute-membrane interactions affecting pressure driven membrane processes. <i>Desalination</i> , 1978 , 26, 17-36	10.3	12
210	Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation. Journal of Membrane Science, 2020 , 599, 117814	9.6	12
209	Perspective of Membrane Technology in Pomegranate Juice Processing: A Review. <i>Foods</i> , 2020 , 9,	4.9	12
208	A few-layer graphene for advanced composite PVDF membranes dedicated to water desalination: a comparative study. <i>Nanoscale Advances</i> , 2020 , 2, 4728-4739	5.1	12
207	Fluorinated MOF-808 with various modulators to fabricate high-performance hybrid membranes with enhanced hydrophobicity for organic-organic pervaporation. <i>Separation and Purification Technology</i> , 2021 , 264, 118315	8.3	12
206	Functional carbon nanotubes for high-quality charge transfer and moisture regulation through membranes: structural and functional insights. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 12919-26	3.6	11
205	Graphene stimulates the nucleation and growth rate of NaCl crystals from hypersaline solution via membrane crystallization. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 1723-1736	4.2	11
204	Seawater desalination using PVDF-HFP membrane in DCMD process: assessment of operating condition by response surface method. <i>Chemical Engineering Communications</i> , 2019 , 206, 237-246	2.2	11
203	Membranes with tailored wettability properties for the generation of uniform emulsion droplets with high efficiency. <i>Journal of Membrane Science</i> , 2014 , 459, 96-103	9.6	11

202	PAN hollow fiber membranes elicit functional hippocampal neuronal network. <i>Journal of Materials Science: Materials in Medicine</i> , 2012 , 23, 149-56	4.5	11
201	Tunable separation via chemical functionalization of polyvinylidenefluoride membranes using piranha reagent. <i>Journal of Membrane Science</i> , 2017 , 541, 567-579	9.6	11
200	Preparation and characterization of porous and nonporous polymeric microspheres by the phase inversion process. <i>Advances in Polymer Technology</i> , 2012 , 31, 231-241	1.9	11
199	Preparation and characterization of poly(vinyl chloride)/polystyrene/poly(ethylene glycol) hollow-fiber ultrafiltration membranes. <i>Journal of Applied Polymer Science</i> , 2013 , 130, 989-1004	2.9	11
198	Hydrogen mixture separation with PEEK-WC asymmetric membranes. <i>Separation and Purification Technology</i> , 2009 , 69, 195-204	8.3	11
197	Boron removal by membrane contactors: the water that purifies water. <i>Clean Technologies and Environmental Policy</i> , 2010 , 12, 53-61	4.3	11
196	Immobilization of Tungsten Catalysts on Plasma Modified Membranes. <i>Plasma Processes and Polymers</i> , 2007 , 4, 326-333	3.4	11
195	Functionalization of polymeric membranes by impregnation and in situ cross-linking of a PDMS/Etyclodextrin network. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2007 , 57, 537-5	543	11
194	Reaction rate profiles in long palladium membrane reactors for methane steam reforming. <i>Desalination</i> , 2008 , 233, 359-366	10.3	11
193	Influence of synthesis parameters on vanadium-silicalite-1 crystal growth prepared with fluoride-containing media. <i>Journal of Crystal Growth</i> , 2006 , 289, 609-616	1.6	11
192	Nitro derivatives of PEEK-WC. Journal of Applied Polymer Science, 2001, 80, 1037-1045	2.9	11
191	Chlorine resistance of polypiperazineamide membranes and modules <i>Desalination</i> , 1991 , 83, 383	10.3	11
190	Experimental analysis of a cross-flow membrane bioreactor with entrapped whole cells: influence of transmembrane pressure and substrate feed concentration on reactor performance. <i>Journal of</i>	9.6	11
	Membrane Science, 1988 , 35, 325-338		
189	Membrane Science, 1988 , 35, 325-338 Mechanically induced permeability in glassy polymers. <i>Journal of Polymer Science: Polymer Chemistry Edition</i> , 1973 , 11, 3327-3329		11
189 188	Mechanically induced permeability in glassy polymers. Journal of Polymer Science: Polymer	8.3	11
	Mechanically induced permeability in glassy polymers. <i>Journal of Polymer Science: Polymer Chemistry Edition</i> , 1973 , 11, 3327-3329 Metals Recovery from Seawater Desalination Brines: Technologies, Opportunities, and Challenges.		
188	Mechanically induced permeability in glassy polymers. <i>Journal of Polymer Science: Polymer Chemistry Edition</i> , 1973 , 11, 3327-3329 Metals Recovery from Seawater Desalination Brines: Technologies, Opportunities, and Challenges. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 7704-7712 Preparation of Pd-Loaded Hierarchical FAU Membranes and Testing in Acetophenone	8.3	11

184	Separation of pentane isomers using MFI zeolite membrane. <i>Separation and Purification Technology</i> , 2013 , 106, 56-62	8.3	10
183	Pd/Ag-based membrane reactors on small scale: Assessment of the feed pressure and design parameters effect on the performance. <i>Chemical Engineering and Processing: Process Intensification</i> , 2010 , 49, 722-731	3.7	10
182	Characteristics and performance of new nanoporous PEEKWC films. <i>European Polymer Journal</i> , 2008 , 44, 2051-2059	5.2	10
181	Membrane bioreactor using pig hepatocytes for in vitro evaluation of anti-inflammatory drugs. <i>Catalysis Today</i> , 2006 , 118, 172-180	5.3	10
180	Malic enzyme immobilization in continuous capillary membrane reactors. <i>Journal of Membrane Science</i> , 1985 , 22, 317-324	9.6	10
179	Thermophilic enzymatic semipermeable membranes. <i>Journal of Membrane Science</i> , 1980 , 6, 345-350	9.6	10
178	Development of Novel ECTFE Coated PP Composite Hollow-Fiber Membranes. <i>Coatings</i> , 2016 , 6, 40	2.9	10
177	Evaluation of Pure-Component Adsorption Properties of DD3R Based on the Langmuir and Sips Models. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 2343-2355	2.8	9
176	Design and Efficient Construction of Bilayer Al2O3/ZrO2 Mesoporous Membranes for Effective Treatment of Suspension Systems. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 4721-4731	₁ 3.9	9
175	CO2/H2 Selectivity Prediction of NaY, DD3R, and Silicalite Zeolite Membranes. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 11431-11438	3.9	9
174	Purification and Characterization of EGalactosidase Synthesized fromBacillus safensis(JUCHE 1). <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 11663-11672	3.9	9
173	Direct Conversion of n-Butane to Isobutene in a Membrane Reactor: Thermodynamic Analysis. <i>Industrial & Discourse amp; Engineering Chemistry Research</i> , 2013 , 52, 10380-10386	3.9	9
172	Production of total reducing sugar (TRS) from acid hydrolysed potato peels by sonication and its optimization. <i>Environmental Technology (United Kingdom)</i> , 2013 , 34, 1077-84	2.6	9
171	Optimum operating conditions in hybrid water treatment process of multi-channel ceramic MF and polyethersulfone beads loaded with photocatalyst. <i>Desalination and Water Treatment</i> , 2013 , 51, 5260-52	267	9
170	Ferrous Ion Effects on the Stability and Properties of Oil-in-Water Emulsions Formulated by Membrane Emulsification. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 3818-3829	3.9	9
169	Membrane contactor as a novel technique for separation of iron ions from ilmenite leachant. <i>International Journal of Mineral Processing</i> , 2010 , 96, 62-69		9
168	Membrane contactors for the oxygen and pH control in desalination. <i>Journal of Membrane Science</i> , 2011 , 376, 207-213	9.6	9
167	New ruthenium porphyrin polymeric membranes: Preparation and characterization. <i>Applied Catalysis A: General</i> , 2008 , 335, 37-45	5.1	9

166	Integrated membrane systems for seawater desalination. <i>Desalination</i> , 2006 , 200, 612-614	10.3	9
165	Energy requirements in membrane distillation: evaluation and optimization. <i>Desalination</i> , 2006 , 200, 586-587	10.3	9
164	New membranes from PEEK-WC and its derivatives. <i>Desalination</i> , 2002 , 145, 47-52	10.3	9
163	Quantum and molecular mechanics calculations on modified silica nano ring. <i>Journal of Molecular Structure</i> , 2005 , 739, 163-172	3.4	9
162	Pervaporative efficiency of organic solvents separation employing hydrophilic and hydrophobic commercial polymeric membranes. <i>Journal of Membrane Science</i> , 2018 , 564, 444-455	9.6	8
161	Micro and nano polycaprolactone particles preparation by pulsed back-and-forward cross-flow batch membrane emulsification for parenteral administration. <i>International Journal of Pharmaceutics</i> , 2014 , 477, 344-50	6.5	8
160	Liquid phase benzene hydroxylation to phenol using semi-batch and continuous membrane reactors. <i>Separation and Purification Technology</i> , 2013 , 107, 195-203	8.3	8
159	Membrane Engineering for Sustainable Development: A Perspective. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 1026	2.6	8
158	PAN hollow fibre membranes with triacetyl-Exyclodextrin for the removal of pesticides from citrus essential oils. <i>Separation and Purification Technology</i> , 2013 , 116, 124-130	8.3	8
157	Anomalous Phenomena Occurring during Permeation and Sorption of C1\(\mathbb{L}\)6 Alcohol Vapors in Teflon AF 2400. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 10406-10417	3.9	8
156	Stabilization of Sulfonated Aromatic Polymer (SAP) Membranes Based on SPEEK-WC for PEMFCs. <i>Fuel Cells</i> , 2013 , 13, 86-97	2.9	8
155	Pervaporation separation of methanol/methyl tert-butyl ether with poly(lactic acid) membranes. <i>Journal of Applied Polymer Science</i> , 2010 , 118, n/a-n/a	2.9	8
154	PEEKWC microcapsules for selective oxidation of benzyl alcohols to aldehydes. <i>Catalysis Communications</i> , 2008 , 9, 2209-2212	3.2	8
153	Probabilistic aspects of polymorph selection by heterogeneous nucleation on microporous hydrophobic membrane surfaces. <i>Journal of Crystal Growth</i> , 2008 , 310, 5364-5369	1.6	8
152	Chromium (III) removal by supported liquid membranes: a comparison among D2HEPA, DNNSA, and a novel extractant as carriers. <i>Water Environment Research</i> , 2006 , 78, 69-75	2.8	8
151	Modelling droplet formation in cross-flow membrane emulsification. <i>Desalination</i> , 2006 , 199, 177-179	10.3	8
150	Novel functional per-fluorinated membranes: suitable nucleating systems for protein crystallization. <i>Desalination</i> , 2006 , 199, 200-203	10.3	8
149	New ruthenium porphyrin polymeric membranes: preparation, characterization and catalytic activity in alkenes aziridination. <i>Desalination</i> , 2006 , 199, 167-169	10.3	8

148	Modeling of two separate phase enzyme membrane reactors for kinetic resolution of naproxen ester. <i>Desalination</i> , 2006 , 200, 514-515	10.3	8
147	An Exergetic Analysis of Membrane Unit Operations Integrated in the Ethylene Production Cycle. <i>Chemical Engineering Research and Design</i> , 2006 , 84, 405-411	5.5	8
146	Selective mass transfer of iron(III) in supported liquid membrane using highly acidic extractants, 3-phenyl-4-acyl-5-isoxazolones. <i>Desalination</i> , 2002 , 148, 257-262	10.3	8
145	Rejection coefficient variation in reverse osmosis process: theory and experiments. <i>Chemical Engineering Science</i> , 1974 , 29, 2197-2204	4.4	8
144	Highly effective enzymes immobilization on ceramics: Requirements for supports and enzymes. <i>Science of the Total Environment</i> , 2021 , 801, 149647	10.2	8
143	Poly(ECaprolactone) Hollow Fiber Membranes for the Biofabrication of a Vascularized Human Liver Tissue. <i>Membranes</i> , 2020 , 10,	3.8	7
142	Molecular insights on NaCl crystal formation approaching PVDF membranes functionalized with graphene. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 7817-7827	3.6	7
141	Performance of Reverse Osmosis Membranes in the Treatment of Flue-Gas Desulfurization (FGD) Wastewaters. <i>Environments - MDPI</i> , 2018 , 5, 71	3.2	7
140	A Membrane-Based Process for the Recovery of Glycyrrhizin and Phenolic Compounds from Licorice Wastewaters. <i>Molecules</i> , 2019 , 24,	4.8	7
139	Process intensification and fuel cells using a Multi-Source Multi-Product approach. <i>Chemical Engineering and Processing: Process Intensification</i> , 2012 , 51, 88-108	3.7	7
138	Surface skin layer formation and molecular separation properties of asymmetric PEEKWC membranes. <i>Separation and Purification Technology</i> , 2011 , 77, 104-111	8.3	7
137	Membrane bioreactors for regenerative medicine: an example of the bioartificial liver. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2010 , 5, 146-159	1.3	7
136	A study of catalytic p-cyclodextrin carbonate membrane reactor performance in PNPA hydrolysis. Journal of Molecular Catalysis A, 1997 , 121, 179-186		7
135	Preparation and characterisation of novel PEEKWC capsules by phase inversion technique. <i>Desalination</i> , 2006 , 199, 115-117	10.3	7
134	EGlucosidase separation from Olea europaea fruit and its use in membrane bioreactors for hydrolysis of oleuropein. <i>Desalination</i> , 2006 , 200, 483-484	10.3	7
133	Polyorganophosphazene membranes: preparation and transport properties. <i>Desalination</i> , 1991 , 80, 18	I-19 <u>3</u>	7
132	Flow regimes in an unstirred discontinuous hyperfiltration process: comparison between theoretical and experimental results. <i>Desalination</i> , 1975 , 16, 287-301	10.3	7
131	Membrane processes combined with enzymatic reactions: An experimental study. <i>Desalination</i> , 1977 , 24, 193-209	10.3	7

130	Performance evaluation of blended PVDF membranes for desalination of seawater RO brine using direct contact membrane distillation63, 6-14		7
129	Anti-neuroinflammatory effect of daidzein in human hypothalamic GnRH neurons in an in vitro membrane-based model. <i>BioFactors</i> , 2021 , 47, 93-111	6.1	7
128	Biologically Active Compounds from Goji (L.) Leaves Aqueous Extracts: Purification and Concentration by Membrane Processes. <i>Biomolecules</i> , 2020 , 10,	5.9	6
127	Kinetic of lactic acid production from sugarcane juice using Lactobacillus plantarum NCIM 2912. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2014 , 9, 374-381	1.3	6
126	Dermal-epidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis. <i>Materials Science and Engineering C</i> , 2017 , 71, 943-953	8.3	6
125	Preparation of stimulus responsive multiple emulsions by membrane emulsification using con a as biochemical sensor. <i>Biotechnology and Bioengineering</i> , 2011 , 108, 913-23	4.9	6
124	New poly ether ether ketones containing phosphorus for membrane preparation. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2010 , 5, 249-255	1.3	6
123	Sodium tungstate immobilized on plasma-treated PVDF membranes: New efficient heterogeneous catalyst for oxidation of secondary amines to nitrones. <i>Journal of Molecular Catalysis A</i> , 2007 , 273, 32-3	8	6
122	Controlling protein crystallization kinetics in membrane crystallizers: effects on morphology and structure. <i>Desalination</i> , 2006 , 200, 598-600	10.3	6
121	Porous stainless steel supported silica membrane for WGS reaction. <i>Desalination</i> , 2006 , 200, 681-683	10.3	6
120	Equilibrium of a Pd-based membrane reactor. <i>Desalination</i> , 2006 , 200, 679-680	10.3	6
119	Catalytic zeolite membrane reactors for the selective CO oxidation. <i>Desalination</i> , 2006 , 200, 702-704	10.3	6
118	Facilitated transport of copper from solutions obtained by elution of cuprocyanide complexes by means of acidic thiourea. <i>Separation Science and Technology</i> , 2002 , 37, 1833-1849	2.5	6
117	An experimental study on a beta-cyclodextrin carbonate membrane reactor in PNPA hydrolysis. <i>Biotechnology and Bioengineering</i> , 1995 , 46, 415-20	4.9	6
116	Dynamically formed membranes prepared from aluminum ion. <i>Journal of Colloid and Interface Science</i> , 1975 , 51, 355-359	9.3	6
115	Kinetic behaviour of deoxycytidylate aminohydrolase gelled on a semi-permeable Membrane. <i>Journal of Molecular Catalysis</i> , 1978 , 4, 233-236		6
114	Recovery of water and contaminants from cooling tower plume. <i>Environmental Engineering Research</i> , 2020 , 25, 222-229	3.6	6
113	Silica Filled Polyphenylsulfone/Polydimethylsiloxane Composite Membranes for Pervaporation Separation of Biobutanol from ABE Mixtures. <i>Chemical Engineering and Processing: Process Intensification</i> , 2020 , 156, 108099	3.7	6

112	Membrane technologies for space engineering. <i>Journal of Membrane Science</i> , 2021 , 626, 119177	9.6	6
111	CO2 Separation via a DDR Membrane: Mutual Influence of Mixed Gas Permeation. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 7054-7060	3.9	6
110	The Effects of PEI Hollow Fiber Substrate Characteristics on PDMS/PEI Hollow Fiber Membranes for CO/N Separation. <i>Membranes</i> , 2021 , 11,	3.8	6
109	Self-assembly of tissue spheroids on polymeric membranes. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2017 , 11, 2090-2103	4.4	5
108	Light gases saturation loading dependence on temperature in LTA 4A zeolite. <i>Microporous and Mesoporous Materials</i> , 2017 , 249, 67-77	5.3	5
107	Membrane bioreactor to guide hepatic differentiation of human mesenchymal stem cells. <i>Journal of Membrane Science</i> , 2018 , 564, 832-841	9.6	5
106	Advanced Material-Ordered Nanotubular Ceramic Membranes Covalently Capped with Single-Wall Carbon Nanotubes. <i>Materials</i> , 2018 , 11,	3.5	5
105	Treatment of Model Textile Dye Wastewater (MTDW) Towards Developing Novel Submerged Membrane Bioreactor Process. <i>Procedia Engineering</i> , 2012 , 44, 1768-1771		5
104	Preface: Advanced Membrane Technology III: Membrane Engineering for Process Intensification Conference. <i>Industrial & Conference Con</i>	3.9	5
103	Influence of residual solvent on the gas transport properties of dense Hyflon□ AD 60X gas separation membranes. <i>Desalination</i> , 2006 , 200, 49-51	10.3	5
102	Improving of the performances of sulfonated PEEK-WC membranes by introducing heteropolyacids in the polymeric matrix. <i>Desalination</i> , 2006 , 200, 658-659	10.3	5
101	Limit conversion of a palladium membrane reactor using counter-current sweep gas on methane steam reforming. <i>Desalination</i> , 2006 , 200, 708-709	10.3	5
100	Hybrid Photocatalytic Membranes Embedding Decatungstate for Heterogeneous Photooxydation. <i>Desalination</i> , 2006 , 200, 705-707	10.3	5
99	Membrane Development for Seawater Desalination. <i>Desalination</i> , 1987 , 63, 57-69	10.3	5
98	Ultrafiltration processes for pollution control and chemical reuse in the tanning industry. <i>Desalination</i> , 1980 , 34, 131-139	10.3	5
97	Mutual influence in permeation of CO2-containing mixtures through a SAPO-34 membrane. <i>Journal of Membrane Science</i> , 2020 , 595, 117534	9.6	5
96	Optimal Membrane-Process Design (OMPD): A software product for optimal design of membrane gas separation processes. <i>Computers and Chemical Engineering</i> , 2020 , 135, 106724	4	5
95	Modeling of Nanofiltration Process Using DSPM-DE Model for Purification of Amine Solution. <i>Membranes</i> , 2021 , 11,	3.8	5

94	Performance of PVDF Based Membranes with 2D Materials for Membrane Assisted-Crystallization Process. <i>Membranes</i> , 2021 , 11,	3.8	5	
93	Fabrication of Polydimethysiloxane (PDMS) Dense Layer on Polyetherimide (PEI) Hollow Fiber Support for the Efficient CO/N Separation Membranes. <i>Polymers</i> , 2021 , 13,	4.5	5	
92	Membrane-Assisted Crystallization: A Molecular View of NaCl Nucleation and Growth. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 2145	2.6	5	
91	Extraction Kinetics of As(V) by Aliquat-336 Using Asymmetric PVDF Hollow-Fiber Membrane Contactors. <i>Membranes</i> , 2018 , 8,	3.8	5	
90	Preparation and Characterization of Polyphenylsulfone (PPSU) Membranes for Biogas Upgrading. <i>Materials</i> , 2020 , 13,	3.5	4	
89	Relationships between Structure and Electrical Sensing of Breathable Membranes. <i>Materials Today: Proceedings</i> , 2016 , 3, 308-312	1.4	4	
88	Neuronal Differentiation Modulated by Polymeric Membrane Properties. <i>Cells Tissues Organs</i> , 2017 , 204, 164-178	2.1	4	
87	Advancing membrane technologies for wastewater treatment and reclamation in selected Arab MENA countries. <i>Desalination and Water Treatment</i> , 2009 , 4, 287-293		4	
86	Process intensification using membrane systems. <i>Clean Technologies and Environmental Policy</i> , 2003 , 5, 3-4	4.3	4	
85	Capillary membrane reactors: Performance and applications. <i>Journal of Membrane Science</i> , 1986 , 27, 253-261	9.6	4	
84	Alkane penetration in zeolite-filled polystyrene sheets. <i>Journal of Membrane Science</i> , 1979 , 5, 349-354	9.6	4	
83	Characterization and control of an immobilized allosteric enzyme system. <i>Annals of the New York Academy of Sciences</i> , 1981 , 369, 235-43	6.5	4	
82	MBR technology for textile wastewater treatment: First experience in Bangladesh. <i>Membrane Water Treatment</i> , 2014 , 5, 197-205		4	
81	Transport Membrane Condenser Heat Exchangers to Break the Water-Energy Nexus-A Critical Review. <i>Membranes</i> , 2020 , 11,	3.8	4	
80	A Systematic Framework for Optimizing a Sweeping Gas Membrane Distillation (SGMD). <i>Membranes</i> , 2020 , 10,	3.8	4	
79	How Can the Desert Beetle and Biowaste Inspire Hybrid Separation Materials for Water Desalination?. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	4	
78	On the use of ultrasonic dental scaler tips as cleaning technique of microfiltration ceramic membranes. <i>Ultrasonics</i> , 2020 , 101, 106035	3.5	4	
77	Water vapor permeation and its influence on gases through a zeolite-4A membrane. <i>Journal of Membrane Science</i> , 2019 , 574, 154-163	9.6	3	

76	Supercritical CO2EtOH expanded liquid processing to produce tailored PEEK-WC membranes. <i>RSC Advances</i> , 2014 , 4, 65098-65107	3.7	3
75	Organic-template-free synthesis of nanosized NaY crystals induced by a FAU membrane. <i>RSC Advances</i> , 2013 , 3, 24038	3.7	3
74	Polycaprolactone-Hydroxyapatite Composite Membrane Scaffolds for Bone Tissue Engineering. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1502, 1		3
73	Influence of Concentration Polarization in Post-Dilutional Hernofiltration of Human Plasma. <i>Artificial Organs</i> , 2008 , 4, 317-321	2.6	3
72	Novel composite hollow fibre gas separation membranes with high selectivity and improved solvent resistance. <i>Desalination</i> , 2006 , 200, 61-63	10.3	3
71	Human galactosylated membrane bioreactor for the long-term maintenance of liver specific functions. <i>Desalination</i> , 2006 , 199, 147-149	10.3	3
70	Pure and mixed gas transport properties of novel asymmetric poly(ether ether ketone) membranes with different morphologies. <i>Desalination</i> , 2006 , 199, 461-463	10.3	3
69	The pressure effect on ethanol steam reforming in membrane reactor: experimental study. <i>Desalination</i> , 2006 , 200, 671-672	10.3	3
68	A molecular simulation study on Ecyclodextrins included in PEEK membrane. <i>Computational and Theoretical Chemistry</i> , 2001 , 540, 15-21		3
67	CoPVDF membranes for protection of cultural heritages. <i>Journal of Membrane Science</i> , 1995 , 102, 131-	13386	3
66	Membranology: an interdisciplinary science. Russian Chemical Bulletin, 1993, 42, 777-790	1.7	3
65	Capillary polysulphone membranes with entrapped whole cells: influence of cell loading and filler molecular weight on membrane mechanical and kinetic performance. <i>Journal of Molecular Catalysis</i> , 1990 , 58, 277-286		3
64	Determination of formation and relaxation of crazes by permeability measurements. <i>Journal of Applied Polymer Science</i> , 1975 , 19, 1999-2003	2.9	3
63	Tensile Properties and Desalination Performance of Modified Cellulose Acetate Membranes. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 1978 , 6, 175-183	3	3
62	Low-Temperature Direct Contact Membrane Distillation for the Treatment of Aqueous Solutions Containing Urea. <i>Membranes</i> , 2020 , 10,	3.8	3
61	A New Type of Composite Membrane PVA-NaY/PA-6 for Separation of Industrially Valuable Mixture Ethanol/Ethyl-Butyl Ether by Pervaporation. <i>Materials</i> , 2020 , 13,	3.5	3
60	Coupling Ultrafiltration-Based Processes to Concentrate Phenolic Compounds from Aqueous Goji Berry Extracts. <i>Molecules</i> , 2020 , 25,	4.8	3
59	Innovative hydrophobic/hydrophilic perfluoropolyether (PFPE)/polyvinylidene fluoride (PVDF) composite membrane for vacuum membrane distillation. <i>Chinese Journal of Chemical Engineering</i> , 2021 .	3.2	3

(2017-2016)

58	Controlled Bulk Properties of Composite Polymeric Solutions for Extensive Structural Order of Honeycomb Polysulfone Membranes. <i>Membranes</i> , 2016 , 6,	3.8	3
57	An Integrated Membrane Process for Butenes Production. <i>Processes</i> , 2016 , 4, 42	2.9	3
56	Sorption of organic liquids in poly(ethylene chlorotrifluoroethylene) Halar 901: Experimental and theoretical analysis. <i>Polymer Testing</i> , 2017 , 58, 199-207	4.5	2
55	110th Anniversary: Selective Recognition of 5-Fluorouracil with Molecular Imprinting Membranes: Molecular Details. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 15497-15505	3.9	2
54	Nanofiltration and Molecularly Imprinted Membranes: A Theoretical Study based on Quantum Mechanics Approach. <i>Procedia Engineering</i> , 2012 , 44, 1761-1762		2
53	Preparation of Novel Ionic Liquid Loaded Polymeric Microspheres by Membrane Emulsification Process. <i>Procedia Engineering</i> , 2012 , 44, 1287-1290		2
52	Estimating limit conversion for methane steam reforming in a palladium membrane reactor using countercurrent sweep gas. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2010 , 5, 48-59	1.3	2
51	Human lymphocyte hollow fiber bioreactor. <i>Desalination</i> , 2006 , 199, 141-143	10.3	2
50	A PEMFC and H2 membrane purification integrated plant. <i>Desalination</i> , 2006 , 199, 156-158	10.3	2
49	Experimental and theoretical evaluation of the membrane affinity to water: role of modifiers in the control of the matrix performance. <i>Desalination</i> , 2006 , 200, 256-258	10.3	2
48	Design of an integrated membrane system for high level hydrogen purification. <i>Desalination</i> , 2006 , 200, 267-268	10.3	2
47	Continuous flow hydrolysis of phosphate esters using membrane reactor containing cyclodextrins. <i>Separation and Purification Technology</i> , 2002 , 28, 61-67	8.3	2
46	Catalytic Behaviour of Carbonate ECD Entrapped in PEEK-WC Membranes. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2002 , 44, 433-437		2
45	An unsteady-state analysis of the hemofiltration processes. <i>Journal of Membrane Science</i> , 1983 , 14, 303	-329	2
44	Characterization of an Enzymatic Capillary Membrane Reactor. <i>Annals of the New York Academy of Sciences</i> , 1984 , 434, 123-126	6.5	2
43	Ultrafiltration processes in blood treatment. <i>Journal of Membrane Science</i> , 1984 , 18, 297-311	9.6	2
42	Workshop on membrane distillation. <i>Journal of Membrane Science</i> , 1986 , 29, 345-346	9.6	2
41	Biohybrid Membrane Systems for Testing Molecules and Stem Cell Therapy in Neuronal Tissue Engineering. <i>Current Pharmaceutical Design</i> , 2017 , 23, 3858-3870	3.3	2

40	Inkjet printed polyelectrolyte multilayer membrane using a polyketone support for organic solvent nanofiltration. <i>Journal of Membrane Science</i> , 2022 , 642, 119943	9.6	2
39	Molecular activation of fluoropolymer membranes via base piranha treatment to enhance transport and mitigate fouling Thew materials for water purification. <i>Journal of Membrane Science</i> , 2021 , 624, 119105	9.6	2
38	Water and salts recovery from desalination brines: An exergy evaluation. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105884	6.8	2
37	A density functional theory study of hydrogen occupation in VNiTi alloys used for dense metal membranes. <i>Journal of Alloys and Compounds</i> , 2016 , 665, 225-230	5.7	1
36	Chromium(VI) Removal by Polyvinyl Chloride (PVC)/Aliquat-336 Polymeric Inclusion Membranes in a Multiframe Flat Sheet Membrane Module. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 2994	2.6	1
35	Mixed matrix membranes as potential transdermal devices for gemfibrozil release. <i>Journal of Applied Polymer Science</i> , 2014 , 132, n/a-n/a	2.9	1
34	Water Recovery from Waste Gaseous Streams: An Application of Hydrophobic Membranes. <i>Procedia Engineering</i> , 2012 , 44, 202-203		1
33	Synthesis of FAUBype Zeolite Membrane for Gas Separation. <i>Procedia Engineering</i> , 2012 , 44, 699-700		1
32	Preparation and Characterization of Microporous Membranes Prepared by Wet Phase Inversion. Application to Ni (II) Transport. <i>Materials Science Forum</i> , 2009 , 609, 183-188	0.4	1
31	Pure And Modified Co-poly(amide-12-b-ethylene oxide) Membranes For Gas Separation Studied By Molecular Investigations 2010 ,		1
30	Amino derivatives of PEEK-WC. Journal of Applied Polymer Science, 2010, 117, 2258-2264	2.9	1
29	Fluorinated membranes as interfaces for application in catalysis. <i>Desalination</i> , 2010 , 250, 1147-1149	10.3	1
28	Diffusive and convective transport in HF membrane reactors for biomedical applications. <i>Desalination</i> , 2006 , 199, 135-137	10.3	1
27	Distribution of phase transfer biocatalyst at the oil/water interface by membrane emulsifier and evaluation of enantiocatalytic performance. <i>Desalination</i> , 2006 , 199, 182-184	10.3	1
26	A new combined method to localize enzyme immobilized in polymeric membranes and evaluate its activity in situ. <i>Desalination</i> , 2006 , 199, 228-229	10.3	1
25	Novel bioactive polymeric membranes to elicit specific human hepatocyte responses. <i>Desalination</i> , 2006 , 199, 261-262	10.3	1
24	Theoretical study of H2 permeation through supported Pd-based membranes. <i>Desalination</i> , 2006 , 200, 242-244	10.3	1
23	Improvement of membrane reactor performance in hydrogen production. <i>Desalination</i> , 2006 , 200, 695	- 696 .3	1

(2006-2003)

22	Membrane technology applied to the n-butane oxidation in maleic anhydride production. <i>Chemical Engineering and Processing: Process Intensification</i> , 2003 , 42, 45-54	3.7	1
21	Development and characterization of PPO composite membranes for gas separation. <i>Macromolecular Symposia</i> , 1999 , 138, 93-97	0.8	1
20	Nano- and Micro-Porous Chitosan Membranes for Human Epidermal Stratification and Differentiation. <i>Membranes</i> , 2021 , 11,	3.8	1
19	Polyvinylidenefluoride/carbon nanotubes mixed matrix membranes with tailored properties 2016,		1
18	Membrane contactors for measuring the alcohol content of wines: A preliminary investigation. <i>Separation and Purification Technology</i> , 2019 , 215, 384-389	8.3	1
17	PLGA Multiplex Membrane Platform for Disease Modelling and Testing of Therapeutic Compounds. <i>Membranes</i> , 2021 , 11,	3.8	1
16	Membrane-Assisted Condenser. Clean Technologies, 2018, 1, 2-8	3.4	О
15	High Purity of <code>Lactalbumin</code> from Binary Protein Mixture by Charged UF Membrane Far from the Isoelectric Point to Limit Fouling. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 9167	2.6	O
14	Tunable hydrophobicity and roughness on PVDF surface by grafting to mode IApproach to enhance membrane performance in membrane distillation process. <i>Separation and Purification Technology</i> , 2022 , 291, 120935	8.3	О
13	Green Chemistry and Molecularly Imprinted Membranes. <i>Membranes</i> , 2022 , 12, 472	3.8	Ο
12	Membranes for Ultra-Smart Textiles 2014 , 401-419		
11	ExBitu Characterization of Stabilized Sulfonated Aromatic Polymer (SAP) Membranes for Applications in PEMFCs. <i>Procedia Engineering</i> , 2012 , 44, 799-800		
10	Syngas Upgrading by High Temperature WGS Reaction in a Single Stage Membrane Reactor. <i>Procedia Engineering</i> , 2012 , 44, 1180-1182		
9	Innovative Composite Membranes for Organic Solvent Nanofiltration. <i>Procedia Engineering</i> , 2012 , 44, 251-252		
8	Human Liver Organotypic Membrane Systems. <i>Procedia Engineering</i> , 2012 , 44, 456-458		
7	Biodegradable Membranes for Neuronal Growth and Differentiation. <i>Procedia Engineering</i> , 2012 , 44, 363-366		
6	Advances in membrane-based concentration in the food and beverage industries: direct osmosis and membrane contactors 2013 , 244-283		
5	Hepatocellular functions of human liver cells in oxygen-permeable membrane device. <i>Desalination</i> , 2006 , 200, 488-490	10.3	

- Sodium tungstate immobilised on plasma treated membranes: preparation, characterization and use in flat membrane reactors. *Desalination*, **2006**, 200, 697-699
- 10.3
- Progress in catalytic membrane systems. *Makromolekulare Chemie Macromolecular Symposia*, **1993**, 70-71, 351-362
- ALLOSTERIC dCMP-AMINOHYDROLASE IMMOBILIZED IN PROTEIC MEMBRANES: KINETIC AND TRANSPORT CHARACTERIZATION IN A CSTR.. Chemical Engineering Communications, **1986**, 44, 227-239 2.2
- Alkane penetration in filled polystyrene sheets part II. Journal of Membrane Science, **1980**, 7, 61-69 9.6