Thierry Durroux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7703702/publications.pdf Version: 2024-02-01

Τηιέρον Πιιδρωία

#	Article	IF	CITATIONS
1	Structural insights into recognition of chemokine receptors by Staphylococcus aureus leukotoxins. ELife, 2022, 11, .	6.0	7
2	The ligand-bound state of a G protein-coupled receptor stabilizes the interaction of functional cholesterol molecules. Journal of Lipid Research, 2021, 62, 100059.	4.2	17
3	Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization. Cells, 2021, 10, 618.	4.1	24
4	Molecular insights into mechanisms of GPCR hijacking by <i>Staphylococcus aureus</i> . Proceedings of the United States of America, 2021, 118, .	7.1	12
5	The atypical chemokine receptor 3 interacts with Connexin 43 inhibiting astrocytic gap junctional intercellular communication. Nature Communications, 2020, 11, 4855.	12.8	21
6	A near-infrared fluorogenic dimer enables background-free imaging of endogenous GPCRs in living mice. Chemical Science, 2020, 11, 6824-6829.	7.4	15
7	Context-Dependent Signaling of CXC Chemokine Receptor 4 and Atypical Chemokine Receptor 3. Molecular Pharmacology, 2019, 96, 778-793.	2.3	30
8	Chemoselective Acylation of Hydrazinopeptides to Access Fluorescent Probes for Time-Resolved FRET Assays on GPCRs. Methods in Molecular Biology, 2019, 1947, 137-147.	0.9	0
9	Time-Resolved FRET-Based Assays to Characterize G Protein-Coupled Receptor Hetero-oligomer Pharmacology. Methods in Molecular Biology, 2019, 1947, 151-168.	0.9	3
10	V _{1b} vasopressin receptor trafficking and signaling: Role of arrestins, G proteins and Src kinase. Traffic, 2018, 19, 58-82.	2.7	15
11	From the Promiscuous Asenapine to Potent Fluorescent Ligands Acting at a Series of Aminergic G-Protein-Coupled Receptors. Journal of Medicinal Chemistry, 2018, 61, 174-188.	6.4	13
12	LIT-001, the First Nonpeptide Oxytocin Receptor Agonist that Improves Social Interaction in a Mouse Model of Autism. Journal of Medicinal Chemistry, 2018, 61, 8670-8692.	6.4	33
13	Oligomerization of a G protein-coupled receptor in neurons controlled by its structural dynamics. Scientific Reports, 2018, 8, 10414.	3.3	32
14	Profiling of orthosteric and allosteric group-III metabotropic glutamate receptor ligands on various G protein-coupled receptors with Tag-lite® assays. Neuropharmacology, 2018, 140, 233-245.	4.1	6
15	Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement. Nature Communications, 2017, 8, 14253.	12.8	33
16	Fluorescent-Based Strategies to Investigate G Protein-Coupled Receptors: Evolution of the Techniques to a Better Understanding. Topics in Medicinal Chemistry, 2017, , 217-252.	0.8	1
17	Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells. ELife, 2017, 6, .	6.0	63
18	Fluorescent Ligands and TR-FRET to Study Receptor–Receptor Interactions in the Brain. Neuromethods, 2016, , 99-107.	0.3	0

THIERRY DURROUX

#	Article	IF	CITATIONS
19	Untangling dopamine-adenosine receptor assembly in experimental parkinsonism. DMM Disease Models and Mechanisms, 2015, 8, 57-63.	2.4	55
20	A Broad G Protein-Coupled Receptor Internalization Assay that Combines SNAP-Tag Labeling, Diffusion-Enhanced Resonance Energy Transfer, and a Highly Emissive Terbium Cryptate. Frontiers in Endocrinology, 2015, 6, 167.	3.5	56
21	Design and validation of a homogeneous time-resolved fluorescence cell-based assay targeting the ligand-gated ion channel 5-HT3A. Analytical Biochemistry, 2015, 484, 105-112.	2.4	4
22	Selective Nonpeptidic Fluorescent Ligands for Oxytocin Receptor: Design, Synthesis, and Application to Time-Resolved FRET Binding Assay. Journal of Medicinal Chemistry, 2015, 58, 2547-2552.	6.4	19
23	Multicolor timeâ€resolved Förster resonance energy transfer microscopy reveals the impact of GPCR oligomerization on internalization processes. FASEB Journal, 2015, 29, 2235-2246.	0.5	41
24	Time-Resolved FRET Binding Assay to Investigate Hetero-Oligomer Binding Properties: Proof of Concept with Dopamine D ₁ /D ₃ Heterodimer. ACS Chemical Biology, 2015, 10, 466-474.	3.4	39
25	Time-Resolved FRET Strategy to Screen GPCR Ligand Library. Methods in Molecular Biology, 2015, 1272, 23-36.	0.9	15
26	Fluorescent ligands to investigate GPCR binding properties and oligomerization. Biochemical Society Transactions, 2013, 41, 148-153.	3.4	27
27	BRET and Time-resolved FRET strategy to study GPCR oligomerization: from cell lines toward native tissues. Frontiers in Endocrinology, 2012, 3, 92.	3.5	67
28	Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6733-6738.	7.1	173
29	New Fluorescent Strategies Shine Light on the Evolving Concept of GPCR Oligomerization. Springer Series on Fluorescence, 2012, , 389-415.	0.8	Ο
30	Selective Fluorescent Nonpeptidic Antagonists For Vasopressin V ₂ GPCR: Application To Ligand Screening and Oligomerization Assays Journal of Medicinal Chemistry, 2012, 55, 8588-8602.	6.4	52
31	The oligomeric state sets GABA _B receptor signalling efficacy. EMBO Journal, 2011, 30, 2336-2349.	7.8	84
32	Original Fluorescent Ligand-Based Assays Open New Perspectives in G-Protein Coupled Receptor Drug Screening. Pharmaceuticals, 2011, 4, 202-214.	3.8	25
33	Time Resolved FRET Strategy with Fluorescent Ligands to Analyze Receptor Interactions in Native Tissues: Application to GPCR Oligomerization. Methods in Molecular Biology, 2011, 746, 373-387.	0.9	22
34	Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nature Chemical Biology, 2010, 6, 587-594.	8.0	306
35	The Metabotropic Glutamate Receptor mGlu7 Activates Phospholipase C, Translocates Munc-13-1 Protein, and Potentiates Glutamate Release at Cerebrocortical Nerve Terminals. Journal of Biological Chemistry, 2010, 285, 17907-17917.	3.4	55
36	Leukotriene BLT2 Receptor Monomers Activate the Gi2 GTP-binding Protein More Efficiently than Dimers. Journal of Biological Chemistry, 2010, 285, 6337-6347.	3.4	51

THIERRY DURROUX

#	Article	IF	CITATIONS
37	Familial Nephrogenic Syndrome of Inappropriate Antidiuresis: Dissociation between Aquaporin-2 and Vasopressin Excretion. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E37-E43.	3.6	27
38	Subtlety of the Structureâ ^ Affinity and Structureâ ^ Efficacy Relationships around a Nonpeptide Oxytocin Receptor Agonist. Journal of Medicinal Chemistry, 2010, 53, 1546-1562.	6.4	19
39	A Fluorescent Ligand-Binding Alternative Using Tag-lite® Technology. Journal of Biomolecular Screening, 2010, 15, 1248-1259.	2.6	135
40	Differential Coupling of the Vasopressin V _{1b} Receptor through Compartmentalization within the Plasma Membrane. Molecular Pharmacology, 2009, 75, 637-647.	2.3	26
41	Biased Agonist Pharmacochaperones of the AVP V2 Receptor May Treat Congenital Nephrogenic Diabetes Insipidus. Journal of the American Society of Nephrology: JASN, 2009, 20, 2190-2203.	6.1	93
42	Building a new conceptual framework for receptor heteromers. Nature Chemical Biology, 2009, 5, 131-134.	8.0	349
43	The Constitutively Active V2 Receptor Mutants Conferring NSIAD Are Weakly Sensitive to Agonist and Antagonist Regulation. PLoS ONE, 2009, 4, e8383.	2.5	30
44	Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nature Methods, 2008, 5, 561-567.	19.0	452
45	Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agentsâ~†. Progress in Brain Research, 2008, 170, 473-512.	1.4	248
46	Mapping the Binding Site of Arginine Vasopressin to V _{1a} and V _{1b} Vasopressin Receptors. Molecular Endocrinology, 2007, 21, 512-523.	3.7	33
47	Toward Efficient Drug Screening by Homogeneous Assays Based on the Development of New Fluorescent Vasopressin and Oxytocin Receptor Ligands. Journal of Medicinal Chemistry, 2007, 50, 4976-4985.	6.4	59
48	d-myo-Inositol 1-phosphate as a surrogate of d-myo-inositol 1,4,5-tris phosphate to monitor G protein-coupled receptor activation. Analytical Biochemistry, 2006, 358, 126-135.	2.4	117
49	Probing the Existence of G Protein-Coupled Receptor Dimers by Positive and Negative Ligand-Dependent Cooperative Binding. Molecular Pharmacology, 2006, 70, 1783-1791.	2.3	107
50	Design of peptide oxytocin antagonists with strikingly higher affinities and selectivities for the human oxytocin receptor than atosiban. Journal of Peptide Science, 2005, 11, 593-608.	1.4	27
51	Principles: A model for the allosteric interactions between ligand binding sites within a dimeric GPCR. Trends in Pharmacological Sciences, 2005, 26, 376-384.	8.7	75
52	Oxytocin and Vasopressin V1a and V2 Receptors Form Constitutive Homo- and Heterodimers during Biosynthesis. Molecular Endocrinology, 2003, 17, 677-691.	3.7	296
53	Synthesis and Characterization of Fluorescent Antagonists and Agonists for Human Oxytocin and Vasopressin V1aReceptors. Journal of Medicinal Chemistry, 2002, 45, 2579-2588.	6.4	43
54	Chapter 13 Expression of human vasopressin and oxytocin receptors in Escherichia coli. Progress in Brain Research, 2002, 139, 163-177.	1.4	2

THIERRY DURROUX

#	Article	IF	CITATIONS
55	Direct Identification of Human Oxytocin Receptor-binding Domains Using a Photoactivatable Cyclic Peptide Antagonist. Journal of Biological Chemistry, 2001, 276, 26931-26941.	3.4	51
56	Conserved aromatic residues in the transmembrane region VI of the V1avasopressin receptor differentiate agonist vs. antagonist ligand binding. FEBS Journal, 2000, 267, 4253-4263.	0.2	60
57	Visualization of Cell Surface Vasopressin V1a Receptors in Rat Hepatocytes with a Fluorescent Linear Antagonist. Journal of Histochemistry and Cytochemistry, 1999, 47, 401-409.	2.5	9
58	Distribution of Signaling Molecules Involved in Vasopressin-induced Ca2+Mobilization in Rat Hepatocyte Multiplets. Journal of Histochemistry and Cytochemistry, 1999, 47, 601-616.	2.5	20
59	Fluorescent Pseudo-Peptide Linear Vasopressin Antagonists:  Design, Synthesis, and Applications,. Journal of Medicinal Chemistry, 1999, 42, 1312-1319.	6.4	31
60	Pharmacology of Oxytocin and Vasopressin Receptors in the Central and Peripheral Nervous Systema. Annals of the New York Academy of Sciences, 1992, 652, 39-45.	3.8	27
61	Vasoactive intestinal polypeptide and carbachol act synergistically to induce the hydrolysis of inositol containing phospholipids in the rat superior cervical ganglion. Neuroscience Letters, 1987, 75, 211-215.	2.1	12
62	Time-resolved FRET approaches to study GPCR complexes. , 0, , 67-89.		2