
Chiung-Yu Hung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7703582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipid Secretion by Parasitic Cells of Coccidioides Contributes to Disseminated Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 592826.	3.9	5
2	<p>Gold Nanoparticles Mediated Drug-Gene Combinational Therapy for Breast Cancer Treatment</p> . International Journal of Nanomedicine, 2020, Volume 15, 8109-8119.	6.7	32
3	CARD9-Associated Dectin-1 and Dectin-2 Are Required for Protective Immunity of a Multivalent Vaccine against <i>Coccidioides posadasii</i> Infection. Journal of Immunology, 2020, 204, 3296-3306.	0.8	19
4	CARD9 Is Required for Classical Macrophage Activation and the Induction of Protective Immunity against Pulmonary Cryptococcosis. MBio, 2020, 11, .	4.1	18
5	Co-Administration of Injected and Oral Vaccine Candidates Elicits Improved Immune Responses over Either Route Alone. Vaccines, 2020, 8, 37.	4.4	3
6	Characterization of an Uncinocarpus reesii-expressed recombinant tube precipitin antigen of Coccidioides posadasii for serodiagnosis. PLoS ONE, 2019, 14, e0221228.	2.5	4
7	Maize-Produced Ag2 as a Subunit Vaccine for Valley Fever. Journal of Infectious Diseases, 2019, 220, 615-623.	4.0	7
8	A review of innate and adaptive immunity to coccidioidomycosis. Medical Mycology, 2019, 57, S85-S92.	0.7	39
9	Systematic Complex Haploinsufficiency-Based Genetic Analysis of <i>Candida albicans</i> Transcription Factors: Tools and Applications to Virulence-Associated Phenotypes. G3: Genes, Genomes, Genetics, 2018, 8, 1299-1314.	1.8	24
10	Microbial co-infection alters macrophage polarization, phagosomal escape, and microbial killing. Innate Immunity, 2018, 24, 152-162.	2.4	23
11	In Vitro Characterization of a Biaryl Amide Anti-virulence Compound Targeting Candida albicans Filamentation and Biofilm Formation. Frontiers in Cellular and Infection Microbiology, 2018, 8, 227.	3.9	17
12	Glucan-Chitin Particles Enhance Th17 Response and Improve Protective Efficacy of a Multivalent Antigen (rCpa1) against Pulmonary Coccidioides posadasii Infection. Infection and Immunity, 2018, 86, .	2.2	36
13	Immune Response to Coccidioidomycosis and the Development of a Vaccine. Microorganisms, 2017, 5, 13.	3.6	32
14	Rational Design of T Lymphocyte Epitope-Based Vaccines Against Coccidioides Infection. Methods in Molecular Biology, 2017, 1625, 45-64.	0.9	4
15	M-Cells Contribute to the Entry of an Oral Vaccine but Are Not Essential for the Subsequent Induction of Protective Immunity against Francisella tularensis. PLoS ONE, 2016, 11, e0153402.	2.5	5
16	Flow Cytometric Analysis of Protective T-Cell Response Against Pulmonary Coccidioides Infection. Methods in Molecular Biology, 2016, 1403, 551-566.	0.9	5
17	Preclinical identification of vaccine induced protective correlates in human leukocyte antigen expressing transgenic mice infected with Coccidioides posadasii. Vaccine, 2016, 34, 5336-5343.	3.8	14
18	Card9- and MyD88-Mediated Gamma Interferon and Nitric Oxide Production Is Essential for Resistance to Subcutaneous Coccidioides posadasii Infection, Infection and Immunity, 2016, 84, 1166-1175	2.2	33

Сниилс-Үи Нилс

#	Article	IF	CITATIONS
19	MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase. PLoS Pathogens, 2016, 12, e1005787.	4.7	7
20	Calnexin Induces Expansion of Antigen-Specific CD4+ T Cells that Confer Immunity to Fungal Ascomycetes via Conserved Epitopes. Cell Host and Microbe, 2015, 17, 452-465.	11.0	58
21	Vaccinated C57BL/6 Mice Develop Protective and Memory T Cell Responses to Coccidioides posadasii Infection in the Absence of Interleukin-10. Infection and Immunity, 2014, 82, 903-913.	2.2	18
22	C-Type Lectin Receptors Differentially Induce Th17 Cells and Vaccine Immunity to the Endemic Mycosis of North America. Journal of Immunology, 2014, 192, 1107-1119.	0.8	88
23	Interleukin-1 Receptor but Not Toll-Like Receptor 2 Is Essential for MyD88-Dependent Th17 Immunity to Coccidioides Infection. Infection and Immunity, 2014, 82, 2106-2114.	2.2	33
24	Extracellular ammonia at sites of pulmonary infection with Coccidioides posadasii contributes to severity of the respiratory disease. Microbial Pathogenesis, 2013, 59-60, 19-28.	2.9	48
25	Novel Strategies to Enhance Vaccine Immunity against Coccidioidomycosis. PLoS Pathogens, 2013, 9, e1003768.	4.7	30
26	Construction and Evaluation of a Novel Recombinant T Cell Epitope-Based Vaccine against Coccidioidomycosis. Infection and Immunity, 2012, 80, 3960-3974.	2.2	70
27	Transactivation of Inducible Nitric Oxide Synthase Gene by Kruppel-like Factor 6 Regulates Apoptosis during Influenza A Virus Infection. Journal of Immunology, 2012, 189, 606-615.	0.8	23
28	An agonist of human complement fragment C5a enhances vaccine immunity against Coccidioides infection. Vaccine, 2012, 30, 4681-4690.	3.8	50
29	Progress Toward a Human Vaccine Against Coccidioidomycosis. Current Fungal Infection Reports, 2012, 6, 235-244.	2.6	21
30	Gene Disruption in Coccidioides Using Hygromycin or Phleomycin Resistance Markers. Methods in Molecular Biology, 2012, 845, 131-147.	0.9	8
31	Coccidioides releases a soluble factor that suppresses nitric oxide production by murine primary macrophages. Microbial Pathogenesis, 2011, 50, 100-108.	2.9	27
32	Nitric oxide synthase activity has limited influence on the control of Coccidioides infection in mice. Microbial Pathogenesis, 2011, 51, 161-168.	2.9	22
33	Absence of phagocyte NADPH oxidase 2 leads to severe inflammatory response in lungs of mice infected with Coccidioides. Microbial Pathogenesis, 2011, 51, 432-441.	2.9	20
34	Vaccine Immunity to Coccidioidomycosis Occurs by Early Activation of Three Signal Pathways of T Helper Cell Response (Th1, Th2, and Th17). Infection and Immunity, 2011, 79, 4511-4522.	2.2	87
35	A TCR Transgenic Mouse Reactive with Multiple Systemic Dimorphic Fungi. Journal of Immunology, 2011, 187, 1421-1431.	0.8	43
36	Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. Journal of Clinical Investigation, 2011, 121, 554-568.	8.2	201

Сниилс-Үи Нилс

#	Article	IF	CITATIONS
37	Population genomic sequencing of <i>Coccidioides</i> fungi reveals recent hybridization and transposon control. Genome Research, 2010, 20, 938-946.	5.5	166
38	Comparative genomic analyses of the human fungal pathogens <i>Coccidioides</i> and their relatives. Genome Research, 2009, 19, 1722-1731.	5.5	295
39	A Genetically Engineered Live Attenuated Vaccine of <i>Coccidioides posadasii</i> Protects BALB/c Mice against Coccidioidomycosis. Infection and Immunity, 2009, 77, 3196-3208.	2.2	101
40	Single-Step Conjugation of Bioactive Peptides to Proteins via a Self-Contained Succinimidyl Bis-Arylhydrazone. Bioconjugate Chemistry, 2009, 20, 1950-1957.	3.6	18
41	Evaluation of Two Homologous Proline-Rich Proteins of <i>Coccidioides posadasii</i> as Candidate Vaccines against Coccidioidomycosis. Infection and Immunity, 2007, 75, 5777-5787.	2.2	33
42	Coccidioides posadasii produces melanin in vitro and during infection. Fungal Genetics and Biology, 2007, 44, 517-520.	2.1	33
43	Virulence Mechanisms of <i>Coccidioides</i> . Annals of the New York Academy of Sciences, 2007, 1111, 225-235.	3.8	51
44	Improved protection of mice against lethal respiratory infection with Coccidioides posadasii using two recombinant antigens expressed as a single protein. Vaccine, 2006, 24, 5904-5911.	3.8	56
45	Urease Produced by Coccidioides posadasii Contributes to the Virulence of This Respiratory Pathogen. Infection and Immunity, 2006, 74, 504-515.	2.2	94
46	Multivalent Recombinant Protein Vaccine against Coccidioidomycosis. Infection and Immunity, 2006, 74, 5802-5813.	2.2	68
47	A Recombinant Aspartyl Protease of Coccidioides posadasii Induces Protection against Pulmonary Coccidioidomycosis in Mice. Infection and Immunity, 2006, 74, 516-527.	2.2	66
48	Characterization of a Serodiagnostic Complement Fixation Antigen of Coccidioides posadasii Expressed in the Nonpathogenic Fungus Uncinocarpus reesii. Journal of Clinical Microbiology, 2005, 43, 5462-5469.	3.9	9
49	A Metalloproteinase of Coccidioides posadasii Contributes to Evasion of Host Detection. Infection and Immunity, 2005, 73, 6689-6703.	2.2	99
50	Concerted Evolution in the Repeats of an Immunomodulating Cell Surface Protein, SOWgp, of the Human Pathogenic Fungi Coccidioides immitis and C. posadasii. Genetics, 2005, 171, 109-117.	2.9	30
51	Immune response of vaccinated and non-vaccinated mice to Coccidioides posadasii infection. Vaccine, 2005, 23, 3535-3544.	3.8	31
52	Prospects of vaccines for medically important fungi†A vaccine against coccidioidomycosis is justified and attainable. Medical Mycology, 2004, 42, 189-216.	0.7	85
53	A Recombinant β-1,3-Glucanosyltransferase Homolog of Coccidioides posadasii Protects Mice against Coccidioidomycosis. Infection and Immunity, 2003, 71, 3010-3019.	2.2	63
54	A Parasitic Phase-Specific Adhesin of Coccidioides immitis Contributes to the Virulence of This Respiratory Fungal Pathogen. Infection and Immunity, 2002, 70, 3443-3456.	2.2	125

Сниилс-Үи Нилс

#	Article	IF	CITATIONS
55	Recombinant Urease and Urease DNA ofCoccidioides immitis Elicit an Immunoprotective Response against Coccidioidomycosis in Mice. Infection and Immunity, 2001, 69, 2878-2887.	2.2	61
56	Cloning and Expression of the Gene Which Encodes a Tube Precipitin Antigen and Wall-Associated β-Glucosidase ofCoccidioides immitis. Infection and Immunity, 2001, 69, 2211-2222.	2.2	36
57	A Major Cell Surface Antigen of Coccidioides immitis Which Elicits Both Humoral and Cellular Immune Responses. Infection and Immunity, 2000, 68, 584-593.	2.2	67
58	Disruption of the Gene Which Encodes a Serodiagnostic Antigen and Chitinase of the Human Fungal Pathogen Coccidioides immitis. Infection and Immunity, 2000, 68, 5830-5838.	2.2	43
59	Sequence, expression and functional analysis of the Coccidioides immitis ODC (ornithine) Tj ETQq1 1 0.784314	rgBT/Ovei	·loဌန္ 10 Tf 50

60 Virulence Mechanisms of Coccidioides. , 0, , 363-391.

12