Phoebe J Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/770306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strong Margin Influence on the Arctic Ocean Barium Cycle Revealed by Panâ€Arctic Synthesis. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	6
2	Transmitted Cross-Polarized Light Detection of Particulate Inorganic Carbon Concentrations and Fluxes in the Ocean Water Column: Ships to ARGO Floats. Frontiers in Remote Sensing, 2022, 3, .	1.3	5
3	Estimating Mass Flux From Sizeâ€Fractionated Filtered Particles: Insights Into Controls on Sinking Velocities and Mass Fluxes in Recent U.S. GEOTRACES Cruises. Clobal Biogeochemical Cycles, 2022, 36, .	1.9	10
4	Major processes of the dissolved cobalt cycle in the North and equatorial Pacific Ocean. Biogeosciences, 2022, 19, 2365-2395.	1.3	9
5	Dissolved and Particulate Barium Distributions Along the US GEOTRACES North Atlantic and East Pacific Zonal Transects (GA03 and GP16): Global Implications for the Marine Barium Cycle. Global Biogeochemical Cycles, 2022, 36, .	1.9	8
6	Distribution, Sources, and Dynamics of Particulate Matter Along Transâ€Arctic Sections. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	7
7	Marine Particle Chemistry: Influence on Biogeochemical Cycles and Particle Export. ACS Earth and Space Chemistry, 2021, 5, 1210-1211.	1.2	1
8	The Effect of Particle Composition and Concentration on the Partitioning Coefficient for Mercury in Three Ocean Basins. Frontiers in Environmental Chemistry, 2021, 2, .	0.7	10
9	Changing chemistry of particulate manganese in the near- and far-field hydrothermal plumes from 15°S East Pacific Rise and its influence on metal scavenging. Geochimica Et Cosmochimica Acta, 2021, 300, 95-118.	1.6	10
10	Iron Isotope Biogeochemical Cycling in the Western Arctic Ocean. Global Biogeochemical Cycles, 2021, 35, e2021GB006977.	1.9	6
11	Diel Redox Cycle of Manganese in the Surface Arctic Ocean. Geophysical Research Letters, 2021, 48, e2021GL094805.	1.5	7
12	Diagnostic Morphology and Solid-State Chemical Speciation of Hydrothermally Derived Particulate Fe in a Long-Range Dispersing Plume. ACS Earth and Space Chemistry, 2020, 4, 1831-1842.	1.2	7
13	Sizeâ€Fractionated Compositions of Marine Suspended Particles in the Western Arctic Ocean: Lateral and Vertical Sources. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016144.	1.0	37
14	lroning Out Fe Residence Time in the Dynamic Upper Ocean. Global Biogeochemical Cycles, 2020, 34, e2020GB006592.	1.9	19
15	An intermediate-depth source of hydrothermal 3He and dissolved iron in the North Pacific. Earth and Planetary Science Letters, 2020, 539, 116223.	1.8	16
16	Unexpected Source and Transport of Iron from the Deep Peru Margin. ACS Earth and Space Chemistry, 2020, 4, 977-992.	1.2	20
17	Trace Metal Substitution in Marine Phytoplankton. Annual Review of Earth and Planetary Sciences, 2020, 48, 491-517.	4.6	52
18	Variability in 210Pb and 210Po partition coefficients (Kd) along the US GEOTRACES Arctic transect. Marine Chemistry, 2020, 219, 103749.	0.9	21

Рноеве Ј Lam

#	Article	IF	CITATIONS
19	The Transpolar Drift as a Source of Riverine and Shelfâ€Derived Trace Elements to the Central Arctic Ocean. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015920.	1.0	80
20	Shallow particulate organic carbon regeneration in the South Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9753-9758.	3.3	41
21	Insights From the ²³⁸ Uâ€ ²³⁴ Th Method Into the Coupling of Biological Export and the Cycling of Cadmium, Cobalt, and Manganese in the Southeast Pacific Ocean. Global Biogeochemical Cycles, 2019, 33, 15-36.	1.9	20
22	Barite formation in the ocean: Origin of amorphous and crystalline precipitates. Chemical Geology, 2019, 511, 441-451.	1.4	74
23	The distribution of dissolved and particulate Mo and V along the U.S. CEOTRACES East Pacific Zonal Transect (GP16): The roles of oxides and biogenic particles in their distributions in the oxygen deficient zone and the hydrothermal plume. Marine Chemistry, 2018, 201, 242-255.	0.9	55
24	Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15°S. Marine Chemistry, 2018, 201, 183-197.	0.9	27
25	Biogeochemical cycling of Fe and Fe stable isotopes in the Eastern Tropical South Pacific. Marine Chemistry, 2018, 201, 66-76.	0.9	42
26	234Th as a tracer of particulate export and remineralization in the southeastern tropical Pacific. Marine Chemistry, 2018, 201, 35-50.	0.9	42
27	Distribution and isotopic signature of ligand-leachable particulate iron along the GEOTRACES GP16 East Pacific Zonal Transect. Marine Chemistry, 2018, 201, 198-211.	0.9	20
28	Intense hydrothermal scavenging of 230Th and 231Pa in the deep Southeast Pacific. Marine Chemistry, 2018, 201, 212-228.	0.9	42
29	Optical observation of particles and responses to particle composition in the GEOTRACES GP16 section. Marine Chemistry, 2018, 201, 124-136.	0.9	11
30	Cobalt scavenging in the mesopelagic ocean and its influence on global mass balance: Synthesizing water column and sedimentary fluxes. Marine Chemistry, 2018, 201, 151-166.	0.9	40
31	Size-fractionated distributions of suspended particle concentration and major phase composition from the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16). Marine Chemistry, 2018, 201, 90-107.	0.9	72
32	Size distribution of particulate trace elements in the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16). Marine Chemistry, 2018, 201, 108-123.	0.9	45
33	Nitrogen and oxygen isotope measurements of nitrate along the US GEOTRACES Eastern Pacific Zonal Transect (GP16) yield insights into nitrate supply, remineralization, and water mass transport. Marine Chemistry, 2018, 201, 137-150.	0.9	26
34	Flux of Particulate Elements in the North Atlantic Ocean Constrained by Multiple Radionuclides. Global Biogeochemical Cycles, 2018, 32, 1738-1758.	1.9	39
35	The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 2018, 493, 210-223.	1.4	257
36	Global Spatial and Temporal Variation of Cd:P in Euphotic Zone Particulates. Global Biogeochemical Cycles, 2018, 32, 1123-1141.	1.9	18

Рноеве Ј Цам

#	Article	IF	CITATIONS
37	The effect of sample drying temperature on marine particulate organic carbon composition. Limnology and Oceanography: Methods, 2018, 16, 286-298.	1.0	3
38	Kinetics of thorium and particle cycling along the U.S. GEOTRACES North Atlantic Transect. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 125, 106-128.	0.6	21
39	Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation. Geochimica Et Cosmochimica Acta, 2017, 211, 174-193.	1.6	64
40	Arctic Deep Water Ferromanganeseâ€Oxide Deposits Reflect the Unique Characteristics of the Arctic Ocean. Geochemistry, Geophysics, Geosystems, 2017, 18, 3771-3800.	1.0	41
41	The influence of particle concentration and composition on the fractionation of 210Po and 210Pb along the North Atlantic GEOTRACES transect GA03. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 128, 42-54.	0.6	24
42	The acceleration of dissolved cobalt's ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean. Biogeosciences, 2017, 14, 4637-4662.	1.3	30
43	Coastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03. Biogeosciences, 2017, 14, 2715-2739.	1.3	53
44	Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance. Global Biogeochemical Cycles, 2016, 30, 1124-1144.	1.9	86
45	Coastal ocean and shelf-sea biogeochemical cycling of trace elements and isotopes: lessons learned from GEOTRACES. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160076.	1.6	56
46	How well can we quantify dust deposition to the ocean?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150285.	1.6	66
47	Small phytoplankton drive high summertime carbon and nutrient export in the Gulf of California and Eastern Tropical North Pacific. Global Biogeochemical Cycles, 2015, 29, 1309-1332.	1.9	55
48	Cycling of lithogenic marine particles in the US GEOTRACES North Atlantic transect. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 116, 283-302.	0.6	125
49	Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt. Biogeosciences, 2015, 12, 3953-3971.	1.3	32
50	Intensity of Th and Pa scavenging partitioned by particle chemistry in the North Atlantic Ocean. Marine Chemistry, 2015, 170, 49-60.	0.9	83
51	Comparison of particulate trace element concentrations in the North Atlantic Ocean as determined with discrete bottle sampling and in situ pumping. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 116, 273-282.	0.6	29
52	Size-fractionated major particle composition and concentrations from the US GEOTRACES North Atlantic Zonal Transect. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 116, 303-320.	0.6	122
53	The oceanographic toolbox for the collection of sinking and suspended marine particles. Progress in Oceanography, 2015, 133, 17-31.	1.5	61
54	What did we learn about ocean particle dynamics in the GEOSECS–JGOFS era?. Progress in Oceanography, 2015, 133, 6-16.	1.5	44

Рноеве Ј Цам

#	Article	IF	CITATIONS
55	Methods for analyzing the concentration and speciation of major and trace elements in marine particles. Progress in Oceanography, 2015, 133, 32-42.	1.5	37
56	Insights into Particle Cycling from Thorium and Particle Data. Annual Review of Marine Science, 2015, 7, 159-184.	5.1	49
57	Dynamics of particulate organic carbon flux in a global ocean model. Biogeosciences, 2014, 11, 1177-1198.	1.3	66
58	A global ocean inventory of anthropogenic mercury based on water column measurements. Nature, 2014, 512, 65-68.	13.7	404
59	Laboratory intercomparison of marine particulate digestions including Piranha: a novel chemical method for dissolution of polyethersulfone filters. Limnology and Oceanography: Methods, 2014, 12, 530-547.	1.0	58
60	Transient stratification as the cause of the North Pacific productivity spike during deglaciation. Nature Geoscience, 2013, 6, 622-626.	5.4	45
61	Getting good particles: Accurate sampling of particles by large volume inâ€situ filtration. Limnology and Oceanography: Methods, 2012, 10, 681-710.	1.0	95
62	Basinâ€scale inputs of cobalt, iron, and manganese from the Benguelaâ€Angola front to the South Atlantic Ocean. Limnology and Oceanography, 2012, 57, 989-1010.	1.6	134
63	The speciation of marine particulate iron adjacent to active and passive continental margins. Geochimica Et Cosmochimica Acta, 2012, 80, 108-124.	1.6	54
64	The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO ₃ , and opal concentration profiles from the mesopelagic. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	141
65	Distributions of dissolved and particulate iron in the sub-Antarctic and Polar Frontal Southern Ocean (Australian sector). Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 2094-2112.	0.6	65
66	Biogeochemical iron budgets of the Southern Ocean south of Australia: Decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply. Global Biogeochemical Cycles, 2009, 23, .	1.9	164
67	The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophysical Research Letters, 2008, 35, .	1.5	242
68	Sinking fluxes of minor and trace elements in the North Pacific Ocean measured during the VERTIGO program. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 1564-1577.	0.6	58
69	Revisiting Carbon Flux Through the Ocean's Twilight Zone. Science, 2007, 316, 567-570.	6.0	547
70	High biomass, low export regimes in the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 601-638.	0.6	83
71	Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	190
72	Authigenic cadmium enrichments in suboxic sediments: Precipitation and postdepositional mobility. Earth and Planetary Science Letters, 1995, 132, 99-111.	1.8	211