Masaki Mizuguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7702935/publications.pdf

Version: 2024-02-01

186265 91884 5,013 147 28 69 citations g-index h-index papers 152 152 152 4795 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spintronic Materials and Their Properties Investigated by Synchrotron Radiation. Vacuum and Surface Science, 2022, 65, 218-223.	0.1	O
2	Dual Acceleration of Îμ-Ï,, Transformation in Mn–Al Induced by Zn-Addition and In-Magnetic-Field Annealing. Materials Transactions, 2021, 62, 124-129.	1.2	1
3	Nanostructure design for high performance thermoelectric materials based on anomalous Nernst effect using metal/semiconductor multilayer. Applied Physics Express, 2021, 14, 075002.	2.4	11
4	New Developments in Thermoelectric Materials Based on the Thermomagnetic Effects. Materia Japan, 2021, 60, 558-561.	0.1	0
5	Synthesis of Ferromagnetic τ-Mn–Al–C by Reactive Sintering. Materials Transactions, 2021, 62, 130-134.	1.2	2
6	MgO template effect for perpendicular magnetic anisotropy in (001)-textured poly-crystalline MnAlGe films. AIP Advances, 2021, 11, 015124.	1.3	2
7	Non-chemical fluorination of hexagonal boron nitride by high-energy ion irradiation. Nanotechnology, 2020, 31, 125705.	2.6	5
8	Epitaxial L1-FeNi films with high degree of order and large uniaxial magnetic anisotropy fabricated by denitriding FeNiN films. Applied Physics Letters, 2020, 116, .	3.3	13
9	Scanning magneto-optical Kerr effect (MOKE) measurement with element-selectivity by using a soft x-ray free-electron laser and an ellipsoidal mirror. Applied Physics Letters, 2020, 117, .	3.3	6
10	Perpendicular magnetic anisotropy of (001)-textured poly-crystalline MnAlGe films. AIP Advances, 2020, 10, 015122.	1.3	6
11	Anomalous Nernst effect in Co <i>x</i> (MgO)1- <i>x</i> granular thin films. Applied Physics Letters, 2020, 116, .	3.3	12
12	Perpendicularly magnetized Cu ₂ Sb type (Mn-Cr)AlGe films onto amorphous SiO ₂ . Applied Physics Express, 2019, 12, 103002.	2.4	8
13	Magnetization reversal, damping properties and magnetic anisotropy of $\langle i \rangle L \langle i \rangle 1$ -ordered FeNi thin films. Applied Physics Letters, 2019, 115, .	3.3	6
14	Electronic structures of MgO/Fe interfaces with perpendicular magnetization revealed by hard X-ray photoemission with an applied magnetic field. Science and Technology of Advanced Materials, 2019, 20, 796-804.	6.1	7
15	Magnetic-Field-Induced Enhancement of Phase Transformation in Ferromagnetic Ï"-Mn-Al. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2019, 83, 181-185.	0.4	0
16	Fabrication of L10-type FeCo ordered structure using a periodic Ni buffer layer. AIP Advances, 2019, 9, 045307.	1.3	6
17	Energy-harvesting materials based on the anomalous Nernst effect. Science and Technology of Advanced Materials, 2019, 20, 262-275.	6.1	122
18	Anomaly in anomalous Nernst effect at low temperature for $<$ i>C1 _b -type NiMnSb half-Heusler alloy thin film. Japanese Journal of Applied Physics, 2019, 58, SBBI03.	1.5	12

#	Article	IF	Citations
19	Fabrication of <i>L</i> 1-FeNi by pulsed-laser deposition. Applied Physics Letters, 2019, 114, .	3.3	16
20	FeNi and Fe ₁₆ N ₂ Magnets Prepared Using Leaching. Materials Transactions, 2019, 60, 1066-1071.	1.2	7
21	Different Magnetic Field Effects on the <inline-formula> <tex-math notation="LaTeX">\$varepsilon-au\$ </tex-math> </inline-formula> Phase Transformation Between (Mn,Zn)–Al and Mn–Al–C. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	7
22	Fabrication of <i>L</i> 1 _O -FeNi films by denitriding FeNiN films. Journal of the Magnetics Society of Japan, 2019, 43, 79-83.	0.9	5
23	Fabrication of L10-FeNi phase by sputtering with rapid thermal annealing. Journal of Alloys and Compounds, 2018, 750, 164-170.	5.5	15
24	X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy of tetragonal Mn72Ge28epitaxial thin film. Japanese Journal of Applied Physics, 2018, 57, 04FN10.	1.5	1
25	Focus on advanced materials for energy harvesting: prospects and approaches of energy harvesting technologies. Science and Technology of Advanced Materials, 2018, 19, 543-544.	6.1	16
26	Control of anomalous Nernst effect in spintronic materials. Japanese Journal of Applied Physics, 2018, 57, 0902A6.	1.5	3
27	Direct Imaging of Valenceâ€Sensitive Xâ€Ray Fluorescence Holograms of Fe ₃ O ₄ . Physica Status Solidi (B): Basic Research, 2018, 255, 1800100.	1.5	10
28	Effects of Annealing Temperature and Magnetic Field on the \$varepsilonhbox{}au\$ Phase Transformation in Mn-Al Alloys. IEEE Magnetics Letters, 2017, 8, 1-4.	1.1	5
29	Dependence of anomalous Nernst effect on crystal orientation in highly ordered γ′-Fe ₄ N films with anti-perovskite structure. Applied Physics Express, 2017, 10, 073005.	2.4	33
30	Fabrication and characterization of <i>L</i> 1 ₀ -ordered FeNi thin films. Journal Physics D: Applied Physics, 2017, 50, 483002.	2.8	34
31	Synthesis of single-phase L10-FeNi magnet powder by nitrogen insertion and topotactic extraction. Scientific Reports, 2017, 7, 13216.	3.3	86
32	Magnetic-Field-Induced Acceleration of Phase Formation in Ï"-Mn-Al. Materials Transactions, 2017, 58, 1511-1518.	1.2	11
33	Effective fluorination of single-layer graphene by high-energy ion irradiation through a LiF overlayer. RSC Advances, 2016, 6, 68525-68529.	3.6	5
34	Electronic structure and magnetic anisotropy of $\langle i \rangle L \langle i \rangle 1$ -FePt thin film studied by hard x-ray photoemission spectroscopy and first-principles calculations. Applied Physics Letters, 2016, 109, .	3.3	19
35	Growth of L10–FeNi thin films on Cu(001) single crystal substrates using oxygen and gold surfactants. Thin Solid Films, 2016, 603, 348-352.	1.8	14
36	Microstructural evolution and correlated magnetic domain configuration of nanoparticles embedded in a single crystal of Cu ₇₅ –Ni ₂₀ –Fe ₅ alloy. Journal Physics D: Applied Physics, 2016, 49, 335006.	2.8	4

3

#	Article	IF	CITATIONS
37	Temperature dependence of enhanced spin relaxation time in metallic nanoparticles: Experiment and theory. Physical Review B, 2016, 93, .	3.2	O
38	Structural and Magnetic Depth Profile Analysis of L1 $<$ sub $>$ 0 $<$ /sub $>$ FeNi Film by Polarized Neutron Reflectometry. , 2015, , .		0
39	Material dependence of anomalous Nernst effect in perpendicularly magnetized ordered-alloy thin films. Applied Physics Letters, 2015, 106, .	3.3	86
40	Anomalous Nernst effect in L1 <inf>0</inf> type Mn-Ga alloy thin films., 2015,,.		0
41	Artificial fabrication and characterization of L1 <inf>0</inf> -ordered FeNi thin films. , 2015, , .		0
42	Comparison of electrical and optical detection of spin injection inL10-FePt/MgO/GaAs hybrid structures. Journal Physics D: Applied Physics, 2015, 48, 164003.	2.8	3
43	Local structure and magnetism of L1 ₀ -type FeNi alloy films with perpendicular magnetic anisotropy studied through ⁵⁷ Fe nuclear probes. Journal Physics D: Applied Physics, 2015, 48, 205002.	2.8	12
44	Structural and magnetic properties of FeNi thin films fabricated on amorphous substrates. Journal of Applied Physics, $2015, 117, \ldots$	2.5	20
45	Detection of spin-resolved electronic structures from a buried ferromagnetic layer utilizing forward Mott scattering. Applied Physics Letters, 2014, 104, .	3.3	5
46	Formation of FeNi with <i>L</i> 1 ₀ -ordered structure using high-pressure torsion. Philosophical Magazine Letters, 2014, 94, 639-646.	1.2	79
47	Addition of Co to L1 ₀ -ordered FeNi films: influences on magnetic properties and ordered structures. Journal Physics D: Applied Physics, 2014, 47, 425001.	2.8	27
48	Structural, magnetic and electronic state characterization of L1 ₀ -type ordered FeNi alloy extracted from a natural meteorite. Journal of Physics Condensed Matter, 2014, 26, 064206.	1.8	42
49	Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition. Journal of Applied Physics, 2014, 115, 043908.	2.5	21
50	Fe–Ni composition dependence of magnetic anisotropy in artificially fabricated L1 ₀ -ordered FeNi films. Journal of Physics Condensed Matter, 2014, 26, 064207.	1.8	82
51	Significant surface flattening effect by Au addition for Cu growth on Cu3Au(001). Surface Science, 2014, 619, 44-48.	1.9	9
52	Ion-irradiation enhancement of materials degradation in Fe–Cr single crystals detected by magnetic technique. Journal of Nuclear Materials, 2013, 442, S861-S864.	2.7	12
53	Magneto-Optical Properties and Size Effect of Ferromagnetic Metal Nanoparticles. Japanese Journal of Applied Physics, 2013, 52, 073003.	1.5	4
54	Relationship between the microstructure and the magnetic properties of nano-scale magnetic particles formed in a Cu-10 at% Ni-5 at% Co alloy. Journal of the Korean Physical Society, 2013, 63, 555-558.	0.7	1

#	Article	IF	Citations
55	Origin of strong magnetic anisotropy in L10-FeNi probed by angular-dependent magnetic circular dichroism. Journal of Magnetism and Magnetic Materials, 2013, 326, 235-239.	2.3	44
56	Magnetization damping of an $\langle i \rangle L \langle i \rangle 1$ -FeNi thin film with perpendicular magnetic anisotropy. Applied Physics Letters, 2013, 103, .	3.3	28
57	Fabrication of highly L1-ordered FePt thin films by low-temperature rapid thermal annealing. APL Materials, $2013,1,.$	5.1	17
58	Anomalous Nernst Effect in L1 $<$ sub $>$ 0 $<$ /sub $>$ -FePt/MnGa Thermopiles for New Thermoelectric Applications. Applied Physics Express, 2013, 6, 033003.	2.4	131
59	Synthesis and Characterization of L10-FeNi Powders. Journal of the Magnetics Society of Japan, 2013, 37, 198-201.	0.9	7
60	Magnetic Anisotropy and Chemical Order of Artificially Synthesized L1 ₀ -Ordered FeNi Films on Au–Cu–Ni Buffer Layers. Japanese Journal of Applied Physics, 2012, 51, 010204.	1.5	37
61	MgO Layer Thickness Dependence of Structure and Magnetic Properties of \$L1_{0}\$-FePt/MgO/GaAs Structures. Japanese Journal of Applied Physics, 2012, 51, 02BM05.	1.5	5
62	Magnetotransport properties of Co-C granular thin films depending on the carbon sputtering power. Materials Research Society Symposia Proceedings, 2012, 1458, 13.	0.1	0
63	Direct imaging of atomic clusters in an amorphous matrix: A Co-C granular thin film. Applied Physics Letters, 2012, 101, 191902.	3 . 3	10
64	Anomalous Nernst Effect in an L1 $_{0}$ -Ordered Epitaxial FePt Thin Film. Applied Physics Express, 2012, 5, 093002.	2.4	93
65	Barrier height imaging of magnetic films: Use for studying the initial growth of Co films and the surface structure of FePt films. Surface Science, 2012, 606, 226-232.	1.9	O
66	Simple Analysis for Frequency Increase in Spin Torque Oscillation. IEEE Transactions on Magnetics, 2012, 48, 3955-3957.	2.1	1
67	Magnetic Anisotropy and Chemical Order of Artificially Synthesized L1 ₀ -Ordered FeNi Films on Au–Cu–Ni Buffer Layers. Japanese Journal of Applied Physics, 2012, 51, 010204.	1.5	13
68	High-power rf oscillation induced in half-metallic Co2MnSi layer by spin-transfer torque. Applied Physics Letters, 2011, 99, .	3.3	37
69	Artificial Fabrication and Order Parameter Estimation of L10-ordered FeNi Thin Film Grown on a AuNi Buffer Layer. Journal of the Magnetics Society of Japan, 2011, 35, 370-373.	0.9	60
70	L1 ₀ -ordered FeNi film grown on Cu-Ni binary buffer layer. Journal of Physics: Conference Series, 2011, 266, 012119.	0.4	27
71	Determination of local magnetic moment in L1 ₀ -FeNi using photoelectron emission microscopy (PEEM). Journal of Physics: Conference Series, 2011, 266, 012095.	0.4	11
72	Surface morphology and transport properties of Cr nanoparticles in single electron tunneling regime. Journal of Physics: Conference Series, 2011, 266, 012093.	0.4	5

#	Article	IF	CITATIONS
73	Fabrication and Properties of Novel Metal-free L10 Type FeNi Ordered Alloy with High Magnetic Anisotropy. Materia Japan, 2011, 50, 389-392.	0.1	O
74	Ferromagnetic resonance of epitaxial Fe nanodots grown on MgO measured using coplanar waveguides. Journal Physics D: Applied Physics, 2011, 44, 064007.	2.8	8
75	Microstructure Affecting Magnetoresistance of a Cu75–Fe5–Ni20Alloy. Japanese Journal of Applied Physics, 2011, 50, 045807.	1.5	1
76	Strong Temperature Dependence of Magnetoresistance in Co-C Granular Thin Films. IEEE Transactions on Magnetics, 2010, 46, 2144-2147.	2.1	9
77	Spin Accumulation in Cr Nanoparticles in Single Electron Tunneling Regime. IEEE Transactions on Magnetics, 2010, 46, 2060-2062.	2.1	5
78	Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature, 2010, 464, 262-266.	27.8	1,364
79	Characterization of Cu buffer layers for growth of L1-FeNi thin films. Journal of Applied Physics, 2010, 107, .	2.5	35
80	Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotechnology, 2009, 4, 158-161.	31.5	1,140
81	Growth and Characterization of Ultrathin Fe Films on Molecule-Adsorbed MgO Surfaces. Materials Transactions, 2009, 50, 2512-2514.	1.2	1
82	Substantial reduction in the depinning field of vortex domain walls triggered by spin-transfer induced resonance. Applied Physics Letters, 2007, 91, 082502.	3.3	9
83	Tunnel magnetoresistance of C60 a^'Conanocomposites and spin-dependent transport in organic semiconductors. Physical Review B, 2007, 76, .	3.2	49
84	In situ scanning tunneling microscopy observations of polycrystalline MgO(001) tunneling barriers grown on amorphous CoFeB electrode. Applied Physics Letters, 2007, 91, 012507.	3.3	9
85	Spin-dependent transport in nanocomposites of Alq3 molecules and cobalt nanoparticles. Applied Physics Letters, 2007, 91, 063123.	3.3	26
86	Dependence on annealing temperatures of tunneling spectra in high-resistance CoFeB/MgO/CoFeB magnetic tunnel junctions. Solid State Communications, 2007, 143, 574-578.	1.9	23
87	Large magnetoresistance in rubrene-Co nano-composites. Chemical Physics Letters, 2007, 448, 106-110.	2.6	24
88	Differential conductance measurements of low-resistance CoFeB/MgO/CoFeB magnetic tunnel junctions. Journal of Magnetism and Magnetic Materials, 2007, 310, e649-e651.	2.3	7
89	Detection of currentâ€driven magnetic domain wall deformation using anisotropic magnetoresistance effect. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3987-3990.	1.8	0
90	Surface morphology of epitaxial magnetic tunnel junctions. Journal of Nanoscience and Nanotechnology, 2007, 7, 255-8.	0.9	0

#	Article	IF	CITATIONS
91	Spin-Dependent Transport in C60-Co Nano-Composites. Japanese Journal of Applied Physics, 2006, 45, L717-L719.	1.5	33
92	Tunneling spectroscopy of magnetic tunnel junctions: Comparison between CoFeB∕MgO∕CoFeB and CoFeB∕Al–O∕CoFeB. Journal of Applied Physics, 2006, 99, 08T309.	2.5	8
93	Giant tunneling magnetoresistance in MgO-based magnetic tunnel junctions and its industrial applications. , 2006, , .		0
94	Fluorescence EXAFS analysis of local structures around Cr atoms in (Ga,Cr)As. Physica B: Condensed Matter, 2006, 376-377, 651-653.	2.7	6
95	Microscopic structures of MgO barrier layers in single-crystal Feâ^•MgOâ^•Fe magnetic tunnel junctions showing giant tunneling magnetoresistance. Applied Physics Letters, 2006, 88, 251901.	3.3	8
96	Scanning tunneling microscopy observations of single-crystal Feâ^•MgOâ^•Fe magnetic tunnel junctions. Journal of Applied Physics, 2006, 99, 08T308.	2.5	2
97	Tunneling spectra of sputter-deposited CoFeB/MgO/CoFeB magnetic tunnel junctions showing giant tunneling magnetoresistance effect. Solid State Communications, 2005, 136, 611-615.	1.9	36
98	Magnetoresistive Switch Effect and Its Application to Magnetic Field Sensors. Materials Science Forum, 2005, 475-479, 2223-2226.	0.3	0
99	Atomically flat aluminum-oxide barrier layers constituting magnetic tunnel junctions observed by in situ scanning tunneling microscopy. Applied Physics Letters, 2005, 87, 171909.	3.3	10
100	Scanning tunneling microscopy study of a tunneling magneto-resistance device with coherent tunneling transports. , 2005, , .		0
101	Fluorescence EXAFS Analysis of Nanoscale ZincBlende MnAs Dots Grown on GaAs001 by Molecular Beam Epitaxy. Physica Scripta, 2005, , 431.	2.5	1
102	Zinc-blende CrAs/GaAs multilayers grown by molecular-beam epitaxy. Journal of Physics Condensed Matter, 2004, 16, S5549-S5553.	1.8	18
103	X-ray absorption spectroscopy of transition-metal doped diluted magnetic semiconductors Zn1â^'xMxO. Journal of Applied Physics, 2004, 95, 3573-3575.	2.5	51
104	Density-dependent electronic structure of zinc-blende-type MnAs dots on GaAs(001) studied byin situphotoemission spectroscopy. Physical Review B, 2004, 70, .	3.2	24
105	Au/GaAs Magnetoresistive-Switch-Effect Devices Fabricated by Wet Etching. Japanese Journal of Applied Physics, 2004, 43, 2101-2103.	1.5	7
106	Magnetic pole pinning at rectangular defects on MnAs/GaAs(001). Surface Science, 2004, 550, 192-198.	1.9	3
107	Magnetic properties and domain structures of FeSiB thin films. Surface Science, 2004, 556, 33-38.	1.9	15
108	Nano-oxide fabrication on thin-films of 3d-metal compounds and alloys. Surface Science, 2004, 566-568, 349-355.	1.9	5

#	Article	IF	Citations
109	Room temperature magnetoresistance effect observed in Au/GaAs films processed by focused ion beam. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1385-E1386.	2.3	1
110	Magnetic properties and domain structures of FeSiB thin films prepared by RF-sputtering method. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1160-1161.	2.3	5
111	Density dependence of zinc-blende MnAs dots studied by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1553-E1555.	2.3	1
112	Dynamic magnetic properties of epitaxial MnAs thin films studied by spin-wave Brillouin scattering. Journal of Applied Physics, 2004, 95, 6619-6621.	2.5	0
113	Magnetic-field-controllable avalanche breakdown and giant magnetoresistive effects in Goldâ^•semi-insulating-GaAs Schottky diode. Applied Physics Letters, 2004, 85, 5643-5645.	3.3	68
114	Fluorescence extended X-ray absorption fine structure analysis of half-metallic ferromagnet "zinc-blende CrAs―grown on GaAs by molecular beam epitaxy. Nuclear Instruments & Methods in Physics Research B, 2003, 199, 227-230.	1.4	10
115	Electronic and magnetic properties of MnAs nanoclusters studied by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. Applied Physics Letters, 2003, 83, 5485-5487.	3.3	10
116	Magnetic Domain Structure of MnAs Thin Films as a Function of Temperature. Materials Transactions, 2003, 44, 2578-2581.	1.2	2
117	Band discontinuity in the GaAs/AlAs interface studied by in situ photoemission spectroscopy. Applied Physics Letters, 2002, 80, 1764-1766.	3.3	1
118	Growth of ferromagnetic semiconductor: (Ga, Cr)As. Journal of Applied Physics, 2002, 91, 7908.	2.5	29
119	IN-SITU PHOTOELECTRON SPECTROSCOPY OF MAGNETIC DOTS AND MAGNETIC SEMICONDUCTOR NANOSTRUCTURES. International Journal of Modern Physics B, 2002, 16, 1681-1690.	2.0	4
120	THICKNESS DEPENDENCE OF PHOTOEMISSION SPECTRA IN ZINC-BLENDE CrAs. Surface Review and Letters, 2002, 09, 331-334.	1.1	8
121	Fabrication, magnetic properties, and electronic structures of nanoscale zinc-blende MnAs dots (invited). Journal of Applied Physics, 2002, 91, 8088.	2.5	130
122	Epitaxial growth of zinc-blende CrAs/GaAs multilayer. Journal of Applied Physics, 2002, 91, 7917.	2.5	96
123	Epitaxial growth of new half-metallic ferromagnet "zinc-blende CrAs―and the substrate temperature dependence. Journal of Magnetism and Magnetic Materials, 2002, 239, 269-271.	2.3	32
124	Formation, properties and photoelectron spectroscopy of magnetic nanostructures. Journal of Electron Spectroscopy and Related Phenomena, 2002, 124, 165-174.	1.7	6
125	Enchanced magnetooptical response of magnetic nanoclusters embedded in semiconductor. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 470-472.	2.3	17
126	Growth of Fe(100) on GaAs(100) for tunnel magneto-resistance junctions. Journal of Crystal Growth, 2002, 237-239, 1378-1382.	1.5	4

#	Article	IF	CITATIONS
127	Room-Temperature Photo-induced MR in MnSb: GaAs Granular Thin Films. Journal of the Magnetics Society of Japan, 2001, 25, 502-506.	0.4	o
128	Performance of the high-resolution high-flux monochromator for bending magnet beamline BL-1C at the Photon Factory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 573-576.	1.6	12
129	Automated angle-scanning photoemission end-station with molecular beam epitaxy at KEK-PF BL-1C. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1497-1501.	1.6	6
130	Magnetoresistive switch effect in MnSb granular films grown on sulfur-passivated GaAs: more-than 10 000% magnetoresistance effect at room-temperature. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 447-451.	2.7	11
131	Magnetic properties of MnSb granular films. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 1838-1839.	2.3	5
132	Formation and structural investigation of MnSb dots on S-passivated GaAs(001) substrates. Journal of Crystal Growth, 2000, 209, 552-555.	1.5	13
133	Molecular beam epitaxy of MnSb/MnAs multilayers on GaAs. Journal of Crystal Growth, 2000, 209, 556-560.	1.5	3
134	The effect of S- and Se-passivation on MBE growth of MnAs thin films on GaAs(100) substrates. Journal of Crystal Growth, 2000, 209, 561-565.	1.5	2
135	Electron localization in nanoscale MnAs dots on GaAs: a photoemission study. Physica B: Condensed Matter, 2000, 284-288, 1778-1779.	2.7	4
136	Room-temperature thousandfold magnetoresistance change in MnSb granular films: Magnetoresistive switch effect. Applied Physics Letters, 2000, 76, 357-359.	3.3	66
137	Crystallographic and magneto-optical studies of nanoscaled MnSb dots grown on GaAs. Applied Physics Letters, 2000, 76, 1743-1745.	3.3	32
138	Fabrication and magnetotransport properties of nanoscaled MnSb dots. Journal of Applied Physics, 2000, 87, 5639-5641.	2.5	11
139	Room-temperature photoinduced magnetoresistance effect in GaAs including MnSb nanomagnets. Applied Physics Letters, 2000, 76, 2600-2602.	3.3	28
140	Formation of low-dimensional structures of Manganese Pnictides. Journal of the Magnetics Society of Japan, 1999, 23, 688-690.	0.4	2
141	Enhanced Kerr rotation in electrodeposited nickel films. IEEE Transactions on Magnetics, 1999, 35, 2985-2987.	2.1	6
142	Formation of MnAs Dots on S-Passivated GaAs(100) Substrates. Journal of the Magnetics Society of Japan, 1999, 23, 691-693.	0.4	2
143	Photoelectron Spectroscopy and Magnetic Properties of Manganese Pnictides Nanocrystals Formed on Passivated GaAs Substrates. Japanese Journal of Applied Physics, 1999, 38, 373.	1.5	5
144	M _{2,3} Edge Core-level Magnetic Circular Dichroism Measurements of Cu/Co Multilayers. Japanese Journal of Applied Physics, 1999, 38, 419.	1.5	1

#	ARTICLE	IF	CITATIONS
145	Materials Design and Molecular-Beam Epitaxy of Half-Metallic Zinc-Blende CrAs and the Heterostructures. , 0, , 293-311.		0
146	Ferromagnetic Resonance Study on FePt Thin Films with In-Plane Magnetization Using Coplanar Waveguide. Key Engineering Materials, 0, 508, 261-265.	0.4	0
147	Characterization of Cu buffer layers for growth of L10-FeNi thin films. , 0, .		1