List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7702815/publications.pdf Version: 2024-02-01



LUCÃHA DOMINCHES

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Technological trends, global market, and challenges of bio-ethanol production. Biotechnology<br>Advances, 2010, 28, 817-830.                                                                                                | 11.7 | 585       |
| 2  | Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnology Advances, 2010, 28, 375-384.                                                            | 11.7 | 351       |
| 3  | Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Frontiers in Microbiology, 2014, 5, 63.                                                                      | 3.5  | 295       |
| 4  | Wound healing activity of the human antimicrobial peptide LL37. Peptides, 2011, 32, 1469-1476.                                                                                                                              | 2.4  | 203       |
| 5  | Recombinant microbial systems for improved $\hat{l}^2$ -galactosidase production and biotechnological applications. Biotechnology Advances, 2011, 29, 600-609.                                                              | 11.7 | 135       |
| 6  | Improving bacterial cellulose for blood vessel replacement: Functionalization with a chimeric<br>protein containing a cellulose-binding module and an adhesion peptide. Acta Biomaterialia, 2010, 6,<br>4034-4041.          | 8.3  | 134       |
| 7  | Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresource Technology, 2010, 101, 7856-7863.                               | 9.6  | 129       |
| 8  | Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or<br>combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnology for<br>Biofuels, 2019, 12, 20. | 6.2  | 114       |
| 9  | Recombinant CBM-fusion technology — Applications overview. Biotechnology Advances, 2015, 33,<br>358-369.                                                                                                                    | 11.7 | 110       |
| 10 | Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse<br>lignocellulose-based process conditions. Applied Microbiology and Biotechnology, 2019, 103, 159-175.                                  | 3.6  | 104       |
| 11 | Production of fermented cheese whey-based beverage using kefir grains as starter culture: Evaluation of morphological and microbial variations. Bioresource Technology, 2010, 101, 8843-8850.                               | 9.6  | 92        |
| 12 | Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass.<br>Bioresource Technology, 2014, 161, 192-199.                                                                           | 9.6  | 90        |
| 13 | Recent trends on seaweed fractionation for liquid biofuels production. Bioresource Technology, 2020, 299, 122613.                                                                                                           | 9.6  | 83        |
| 14 | Adaptive Evolution of a Lactose-Consuming <i>Saccharomyces cerevisiae</i> Recombinant. Applied and Environmental Microbiology, 2008, 74, 1748-1756.                                                                         | 3.1  | 82        |
| 15 | Comparative study of the biochemical changes and volatile compound formations during the<br>production of novel whey-based kefir beverages and traditional milk kefir. Food Chemistry, 2011, 126,<br>249-253.               | 8.2  | 79        |
| 16 | Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells.<br>Biotechnology and Bioengineering, 2001, 72, 507-514.                                                                     | 3.3  | 77        |
| 17 | Improving the affinity of fibroblasts for bacterial cellulose using carbohydrateâ€binding modules<br>fused to RGD. Journal of Biomedical Materials Research - Part A, 2010, 92A, 9-17.                                      | 4.0  | 75        |
| 18 | Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient<br>lignocellulosic fermentation. Bioresource Technology, 2015, 179, 150-158.                                                 | 9.6  | 74        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Integral valorization of vine pruning residue by sequential autohydrolysis stages. Journal of Cleaner<br>Production, 2017, 168, 74-86.                                                                                 | 9.3  | 72        |
| 20 | Evaluation of strategies for second generation bioethanol production from fast growing biomass<br>Paulownia within a biorefinery scheme. Applied Energy, 2017, 187, 777-789.                                           | 10.1 | 70        |
| 21 | On the track for an efficient detection of Escherichia coli in water: A review on PCR-based methods.<br>Ecotoxicology and Environmental Safety, 2015, 113, 400-411.                                                    | 6.0  | 68        |
| 22 | Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnology Progress, 2012, 28, 526-532.                                                                  | 2.6  | 67        |
| 23 | The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli: a comparison with the traditional gene fusion technology. Applied Microbiology and Biotechnology, 2013, 97, 6779-6791.         | 3.6  | 67        |
| 24 | Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed<br>Eucalyptus globulus wood at high-solid loadings. Fuel, 2014, 135, 482-491.                                           | 6.4  | 67        |
| 25 | Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. Bioresource Technology, 2018, 267, 481-491.                                                      | 9.6  | 67        |
| 26 | Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnology Advances, 2021, 47, 107697.                                                  | 11.7 | 67        |
| 27 | Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions. Bioresource Technology, 2017, 227, 24-34. | 9.6  | 66        |
| 28 | Metabolic engineering of <i>Saccharomyces cerevisiae</i> for lactose/whey fermentation.<br>Bioengineered Bugs, 2010, 1, 164-171.                                                                                       | 1.7  | 65        |
| 29 | Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach. Renewable Energy, 2016, 95, 1-9.                                           | 8.9  | 65        |
| 30 | Cellulase recycling in biorefineries—is it possible?. Applied Microbiology and Biotechnology, 2015, 99,<br>4131-4143.                                                                                                  | 3.6  | 64        |
| 31 | Virtual laboratories in (bio)chemical engineering education. Education for Chemical Engineers, 2010, 5, e22-e27.                                                                                                       | 4.8  | 59        |
| 32 | Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renewable Energy, 2019, 141, 728-735.                                         | 8.9  | 59        |
| 33 | Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods. Industrial Crops and Products, 2019, 132, 99-110.                           | 5.2  | 59        |
| 34 | Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Industrial Crops and Products, 2019, 132, 327-335.                                                          | 5.2  | 59        |
| 35 | Applications of yeast flocculation in biotechnological processes. Biotechnology and Bioprocess Engineering, 2000, 5, 288-305.                                                                                          | 2.6  | 58        |
| 36 | Aspergillus niger β-galactosidase production by yeast in a continuous high cell density reactor.<br>Process Biochemistry, 2005, 40, 1151-1154.                                                                         | 3.7  | 58        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Robust industrial Saccharomyces cerevisiae strains for very high gravity bio-ethanol fermentations.<br>Journal of Bioscience and Bioengineering, 2011, 112, 130-136.                                                      | 2.2  | 58        |
| 38 | Engineered <i>Saccharomyces cerevisiae</i> for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered, 2020, 11, 883-903.                                                        | 3.2  | 57        |
| 39 | Continuous ethanol fermentation of lactose by a recombinant flocculatingSaccharomyces cerevisiae strain. , 1999, 64, 692-697.                                                                                             |      | 56        |
| 40 | Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts. Biotechnology for Biofuels, 2020, 13, 138.                             | 6.2  | 56        |
| 41 | Studies of a pervaporation reactor: Kinetics and equilibrium shift in benzyl alcohol acetylation.<br>Chemical Engineering Science, 1999, 54, 1461-1465.                                                                   | 3.8  | 55        |
| 42 | Polycystic ovary syndrome and hyperprolactinemia are distinct entities. Gynecological Endocrinology, 2007, 23, 267-272.                                                                                                   | 1.7  | 55        |
| 43 | HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Applied Microbiology and Biotechnology, 2018, 102, 4589-4600.     | 3.6  | 54        |
| 44 | Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity.<br>Food Chemistry, 2020, 316, 126298.                                                                                    | 8.2  | 53        |
| 45 | Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes. Biotechnology Letters, 2010, 32, 1655-1661.                                                             | 2.2  | 50        |
| 46 | Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae<br>CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Bioresource<br>Technology, 2015, 191, 7-16. | 9.6  | 50        |
| 47 | Intensifying ethanol production from brewer's spent grain waste: Use of whole slurry at high solid<br>loadings. New Biotechnology, 2019, 53, 1-8.                                                                         | 4.4  | 49        |
| 48 | Boosting bioethanol production from Eucalyptus wood by whey incorporation. Bioresource Technology, 2018, 250, 256-264.                                                                                                    | 9.6  | 47        |
| 49 | Ashbya gossypii beyond industrial riboflavin production: A historical perspective and emerging biotechnological applications. Biotechnology Advances, 2015, 33, 1774-1786.                                                | 11.7 | 46        |
| 50 | Guidelines to reach high-quality purified recombinant proteins. Applied Microbiology and Biotechnology, 2018, 102, 81-92.                                                                                                 | 3.6  | 46        |
| 51 | Application of the Cre-loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus.<br>Journal of Biotechnology, 2007, 131, 20-26.                                                                      | 3.8  | 45        |
| 52 | Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Bioresource Technology, 2016, 220, 323-332.                                                                       | 9.6  | 45        |
| 53 | Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. Biotechnology for Biofuels, 2011, 4, 57.              | 6.2  | 44        |
| 54 | Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: current status and perspectives. Sustainable Energy and Fuels, 2021, 5, 4233-4247.  | 4.9  | 42        |

| #  | Article                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Recombinant lectins: an array of tailor-made glycan-interaction biosynthetic tools. Critical Reviews in<br>Biotechnology, 2013, 33, 66-80.                                                                                                                                                                            | 9.0 | 41        |
| 56 | Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered<br>Saccharomyces cerevisiae: effect of supplementation with corn steep liquor and repeated-batch<br>operation with biomass recycling by flocculation. Journal of Industrial Microbiology and<br>Biotechnology, 2010, 37, 973-982. | 3.0 | 40        |
| 57 | Characterization and genome sequencing of a Citrobacter freundii phage CfP1 harboring a lysin active against multidrug-resistant isolates. Applied Microbiology and Biotechnology, 2016, 100, 10543-10553.                                                                                                            | 3.6 | 40        |
| 58 | Construction of a flocculent Saccharomyces cerevisiae fermenting lactose. Applied Microbiology and Biotechnology, 1999, 51, 621-626.                                                                                                                                                                                  | 3.6 | 39        |
| 59 | Escherichia coli expression and purification of LL37 fused to a family III carbohydrate-binding module from Clostridium thermocellum. Protein Expression and Purification, 2010, 71, 1-7.                                                                                                                             | 1.3 | 39        |
| 60 | Chemical composition and sensory analysis of cheese wheyâ€based beverages using kefir grains as starter culture. International Journal of Food Science and Technology, 2011, 46, 871-878.                                                                                                                             | 2.7 | 38        |
| 61 | Development of a sustainable bioprocess based on green technologies for xylitol production from corn cob. Industrial Crops and Products, 2020, 156, 112867.                                                                                                                                                           | 5.2 | 38        |
| 62 | Development of stable flocculent Saccharomyces cerevisiae strain for continuous Aspergillus niger Î <sup>2</sup> -galactosidase production. Journal of Bioscience and Bioengineering, 2007, 103, 318-324.                                                                                                             | 2.2 | 37        |
| 63 | Recombinant expression and purification of the antimicrobial peptide magaininâ€⊋. Biotechnology<br>Progress, 2013, 29, 17-22.                                                                                                                                                                                         | 2.6 | 37        |
| 64 | Fractionation of <i>Eucalyptus globulus</i> Wood by Glycerol–Water Pretreatment: Optimization and Modeling. Industrial & Engineering Chemistry Research, 2013, 52, 14342-14352.                                                                                                                                       | 3.7 | 37        |
| 65 | Valorizing recycled paper sludge by a bioethanol production process with cellulase recycling.<br>Bioresource Technology, 2016, 216, 637-644.                                                                                                                                                                          | 9.6 | 36        |
| 66 | Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. Journal of Advanced Research, 2022, 36, 249-264.                                                                                                                                       | 9.5 | 36        |
| 67 | Construction of a flocculent Saccharomyces cerevisiae strain secreting high levels of Aspergillus niger β-galactosidase. Applied Microbiology and Biotechnology, 2002, 58, 645-650.                                                                                                                                   | 3.6 | 35        |
| 68 | Expression of frutalin, an α-d-galactose-binding jacalin-related lectin, in the yeast Pichia pastoris.<br>Protein Expression and Purification, 2008, 60, 188-193.                                                                                                                                                     | 1.3 | 35        |
| 69 | Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2. Biotechnology Letters, 2012, 34, 45-53.                                                                                                                                         | 2.2 | 35        |
| 70 | Systematic approach for the development of fruit wines from industrially processed fruit concentrates, including optimization of fermentation parameters, chemical characterization and sensory evaluation. LWT - Food Science and Technology, 2015, 62, 1043-1052.                                                   | 5.2 | 35        |
| 71 | Evaluation of pituitary and thyroid hormones in patients with subarachnoid hemorrhage due to ruptured intracranial aneurysm. Arquivos De Neuro-Psiquiatria, 2003, 61, 14-19.                                                                                                                                          | 0.8 | 34        |
| 72 | Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae. Biotechnology Letters, 2008, 30, 1953-1958.                                                                                                                                                              | 2.2 | 33        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Comparative autohydrolysis study of two mixtures of forest and marginal land resources for co-production of biofuels and value-added compounds. Renewable Energy, 2018, 128, 20-29.                                       | 8.9 | 33        |
| 74 | The Fh8 tag: A fusion partner for simple and cost-effective protein purification in Escherichia coli.<br>Protein Expression and Purification, 2013, 92, 163-170.                                                          | 1.3 | 32        |
| 75 | Lignocellulosic bioethanol production with revalorization of low-cost agroindustrial by-products as nutritional supplements. Industrial Crops and Products, 2015, 64, 16-24.                                              | 5.2 | 32        |
| 76 | Aqueous solutions of deep eutectic systems as reaction media for the saccharification and fermentation of hardwood xylan into xylitol. Bioresource Technology, 2020, 311, 123524.                                         | 9.6 | 32        |
| 77 | Expression of Trichoderma reesei cellulases CBHI and EGI in Ashbya gossypii. Applied Microbiology and<br>Biotechnology, 2010, 87, 1437-1446.                                                                              | 3.6 | 31        |
| 78 | Random and direct mutagenesis to enhance protein secretion in <i><i>Ashbya gossypii</i></i> .<br>Bioengineered, 2013, 4, 322-331.                                                                                         | 3.2 | 31        |
| 79 | Escherichia coli expression and purification of four antimicrobial peptides fused to a family 3 carbohydrate-binding module (CBM) from Clostridium thermocellum. Protein Expression and Purification, 2008, 59, 161-168.  | 1.3 | 30        |
| 80 | Cytotoxic Effects of Native and Recombinant Frutalin, a Plant Galactose-Binding Lectin, on HeLa<br>Cervical Cancer Cells. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.                                      | 3.0 | 30        |
| 81 | Cenome-wide screening of <i>Saccharomyces cerevisiae</i> genes required to foster tolerance<br>towards industrial wheat straw hydrolysates. Journal of Industrial Microbiology and Biotechnology,<br>2014, 41, 1753-1761. | 3.0 | 30        |
| 82 | Biological activity of heterologous murine interleukin-10 and preliminary studies on the use of a dextrin nanogel as a delivery system. International Journal of Pharmaceutics, 2010, 400, 234-242.                       | 5.2 | 29        |
| 83 | Vinegar production from fruit concentrates: effect on volatile composition and antioxidant activity.<br>Journal of Food Science and Technology, 2017, 54, 4112-4122.                                                      | 2.8 | 29        |
| 84 | Insights into the economic viability of cellulases recycling on bioethanol production from recycled paper sludge. Bioresource Technology, 2018, 267, 347-355.                                                             | 9.6 | 29        |
| 85 | Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings. Biotechnology for Biofuels, 2018, 11, 111.                                | 6.2 | 29        |
| 86 | Co-production of biofuels and value-added compounds from industrial Eucalyptus globulus bark<br>residues using hydrothermal treatment. Fuel, 2021, 285, 119265.                                                           | 6.4 | 29        |
| 87 | Contamination of a high-cell-density continuous bioreactor. , 2000, 68, 584-587.                                                                                                                                          |     | 28        |
| 88 | Relationships between hydrodynamics and rheology of flocculating yeast suspensions in a high-cell-density airlift bioreactor. Biotechnology and Bioengineering, 2005, 89, 393-399.                                        | 3.3 | 27        |
| 89 | Cell surface engineering of Saccharomyces cerevisiae for simultaneous valorization of corn cob and cheese whey via ethanol production. Energy Conversion and Management, 2021, 243, 114359.                               | 9.2 | 27        |
| 90 | Microbial Biosynthesis of Lactones: Gaps and Opportunities towards Sustainable Production. Applied Sciences (Switzerland), 2021, 11, 8500.                                                                                | 2.5 | 27        |

| #   | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | cDNA Cloning and Functional Expression of the α-d-Galactose-Binding Lectin Frutalin in Escherichia<br>coli. Molecular Biotechnology, 2009, 43, 212-220.                                                                  | 2.4  | 26        |
| 92  | RAPD and SCAR markers as potential tools for detection of milk origin in dairy products: Adulterant sheep breeds in Serra da Estrela cheese production. Food Chemistry, 2016, 211, 631-636.                              | 8.2  | 26        |
| 93  | Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood. Biomass Conversion and Biorefinery, 2014, 4, 77-86.                                                         | 4.6  | 23        |
| 94  | Cre-loxP-based system for removal and reuse of selection markers in Ashbya gossypii targeted engineering. Fungal Genetics and Biology, 2014, 68, 1-8.                                                                    | 2.1  | 23        |
| 95  | The Crystal Structure of the R280K Mutant of Human p53 Explains the Loss of DNA Binding.<br>International Journal of Molecular Sciences, 2018, 19, 1184.                                                                 | 4.1  | 23        |
| 96  | Factors affecting extraction of adsorbed wine volatile compounds and wood extractives from used oak wood. Food Chemistry, 2019, 295, 156-164.                                                                            | 8.2  | 23        |
| 97  | Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Scientific Reports, 2020, 10, 22329.               | 3.3  | 22        |
| 98  | Construction of a flocculent brewer's yeast strain secreting Aspergillus niger β-galactosidase. Applied<br>Microbiology and Biotechnology, 2000, 54, 97-103.                                                             | 3.6  | 21        |
| 99  | Simultaneous Saccharification and Fermentation of Hydrothermal Pretreated Lignocellulosic<br>Biomass: Evaluation of Process Performance Under Multiple Stress Conditions. Bioenergy Research,<br>2016, 9, 750-762.       | 3.9  | 21        |
| 100 | SLMP53-2 Restores Wild-Type-Like Function to Mutant p53 through Hsp70: Promising Activity in Hepatocellular Carcinoma. Cancers, 2019, 11, 1151.                                                                          | 3.7  | 21        |
| 101 | DNA-based approaches for dairy products authentication: A review and perspectives. Trends in Food Science and Technology, 2021, 109, 386-397.                                                                            | 15.1 | 21        |
| 102 | Very High Gravity Bioethanol Revisited: Main Challenges and Advances. Fermentation, 2021, 7, 38.                                                                                                                         | 3.0  | 21        |
| 103 | Recombinant production of plant lectins in microbial systems for biomedical application ââ,¬â€œ the<br>frutalin case study. Frontiers in Plant Science, 2014, 5, 390.                                                    | 3.6  | 20        |
| 104 | Microbial lipids from industrial wastes using xylose-utilizing Ashbya gossypii strains. Bioresource<br>Technology, 2019, 293, 122054.                                                                                    | 9.6  | 20        |
| 105 | A selective p53 activator and anticancer agent to improve colorectal cancer therapy. Cell Reports, 2021, 35, 108982.                                                                                                     | 6.4  | 20        |
| 106 | Magnetic Nanoparticles as Support for Cellulase Immobilization Strategy for Enzymatic Hydrolysis<br>Using Hydrothermally Pretreated Corn Cob Biomass. Bioenergy Research, 2022, 15, 1946-1957.                           | 3.9  | 20        |
| 107 | The Effect of the Electric Field on Lag Phase, β-Galactosidase Production and Plasmid Stability of a Recombinant Saccharomyces cerevisiae Strain Growing on Lactose. Food and Bioprocess Technology, 2012, 5, 3014-3020. | 4.7  | 19        |
| 108 | Understanding wine sorption by oak wood: Modeling of wine uptake and characterization of volatile compounds retention. Food Research International, 2019, 116, 249-257.                                                  | 6.2  | 19        |

| #   | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae<br>strains during continuous growth at sub- and- supra optimal temperatures. Biotechnology Reports<br>(Amsterdam, Netherlands), 2020, 26, e00462. | 4.4  | 19        |
| 110 | Validation of a LLME/GC-MS Methodology for Quantification of Volatile Compounds in Fermented Beverages. Molecules, 2020, 25, 621.                                                                                                                | 3.8  | 19        |
| 111 | Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels,<br>Biopolymers, Antioxidants, and Bio-Composites following the Concept of Biorefinery: A Review.<br>Polymers, 2022, 14, 1640.                        | 4.5  | 19        |
| 112 | A comparative study of recombinant and native frutalin binding to human prostate tissues. BMC Biotechnology, 2009, 9, 78.                                                                                                                        | 3.3  | 18        |
| 113 | Blockage of the pyrimidine biosynthetic pathway affects riboflavin production in Ashbya gossypii.<br>Journal of Biotechnology, 2015, 193, 37-40.                                                                                                 | 3.8  | 18        |
| 114 | Strategies towards Reduction of Cellulases Consumption: Debottlenecking the Economics of Lignocellulosics Valorization Processes. Polysaccharides, 2021, 2, 287-310.                                                                             | 4.8  | 18        |
| 115 | L-lactic acid production from multi-supply autohydrolyzed economically unexploited lignocellulosic biomass. Industrial Crops and Products, 2021, 170, 113775.                                                                                    | 5.2  | 18        |
| 116 | Production ofβ-galactosidase from recombinantSaccharomyces cerevisiae grown on lactose. Journal of Chemical Technology and Biotechnology, 2004, 79, 809-815.                                                                                     | 3.2  | 17        |
| 117 | Highâ€level expression of <i>Aspergillus niger</i> βâ€galactosidase in <i>Ashbya gossypii</i> .<br>Biotechnology Progress, 2014, 30, 261-268.                                                                                                    | 2.6  | 17        |
| 118 | New biotechnological applications for <i>Ashbya gossypii</i> : Challenges and perspectives.<br>Bioengineered, 2017, 8, 309-315.                                                                                                                  | 3.2  | 17        |
| 119 | Metabolic engineering of Ashbya gossypii for deciphering the de novo biosynthesis of γ-lactones.<br>Microbial Cell Factories, 2019, 18, 62.                                                                                                      | 4.0  | 17        |
| 120 | Volatile fingerprinting differentiates diverse-aged craft beers. LWT - Food Science and Technology, 2019, 108, 129-136.                                                                                                                          | 5.2  | 17        |
| 121 | Resveratrol Production from Hydrothermally Pretreated Eucalyptus Wood Using Recombinant<br>Industrial <i>Saccharomyces cerevisiae</i> Strains. ACS Synthetic Biology, 2021, 10, 1895-1903.                                                       | 3.8  | 17        |
| 122 | Galactose to tagatose isomerization by the l-arabinose isomerase from Bacillus subtilis: A biorefinery<br>approach for Gelidium sesquipedale valorisation. LWT - Food Science and Technology, 2021, 151, 112199.                                 | 5.2  | 16        |
| 123 | Establishment of Kluyveromyces marxianus as a Microbial Cell Factory for Lignocellulosic Processes:<br>Production of High Value Furan Derivatives. Journal of Fungi (Basel, Switzerland), 2021, 7, 1047.                                         | 3.5  | 16        |
| 124 | Molecular and Functional Characterization of an Invertase Secreted by Ashbya gossypii. Molecular<br>Biotechnology, 2014, 56, 524-534.                                                                                                            | 2.4  | 15        |
| 125 | BSA-based sample clean-up columns for ochratoxin A determination in wine: Method development and validation. Food Chemistry, 2019, 300, 125204.                                                                                                  | 8.2  | 15        |
| 126 | Yeast cell factories for sustainable whey-to-ethanol valorisation towards a circular economy.<br>Biofuel Research Journal, 2021, 8, 1529-1549.                                                                                                   | 13.3 | 15        |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Nutritional requirements and strain heterogeneity in <i>Ashbya gossypii</i> . Journal of Basic<br>Microbiology, 2012, 52, 582-589.                                                                                                    | 3.3  | 14        |
| 128 | Enhanced heterologous protein production in <scp>P</scp> ichia pastoris under increased air pressure. Biotechnology Progress, 2014, 30, 1040-1047.                                                                                    | 2.6  | 14        |
| 129 | Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed Eucalyptus globulus wood. Cellulose, 2018, 25, 2505-2514.                              | 4.9  | 14        |
| 130 | Hemicellulosic Bioethanol Production from Fast-Growing Paulownia Biomass. Processes, 2021, 9, 173.                                                                                                                                    | 2.8  | 14        |
| 131 | Plasmid-mediate transfer of FLO1 into industrial Saccharomyces cerevisiae PE-2 strain creates a strain useful for repeat-batch fermentations involving flocculation–sedimentation. Bioresource Technology, 2012, 108, 162-168.        | 9.6  | 13        |
| 132 | Genome-wide metabolic re-annotation of Ashbya gossypii: new insights into its metabolism through a<br>comparative analysis with Saccharomyces cerevisiae and Kluyveromyces lactis. BMC Genomics, 2014, 15,<br>810.                    | 2.8  | 13        |
| 133 | Physiological characterization of a pyrimidine auxotroph exposes link between uracil<br>phosphoribosyltransferase regulation and riboflavin production in Ashbya gossypii. New<br>Biotechnology, 2019, 50, 1-8.                       | 4.4  | 13        |
| 134 | SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot<br>mutations. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129440.                                              | 2.4  | 13        |
| 135 | Whole Cell Biocatalysis of 5-Hydroxymethylfurfural for Sustainable Biorefineries. Catalysts, 2022, 12, 202.                                                                                                                           | 3.5  | 13        |
| 136 | Resveratrol production for the valorisation of lactose-rich wastes by engineered industrial Saccharomyces cerevisiae. Bioresource Technology, 2022, 359, 127463.                                                                      | 9.6  | 13        |
| 137 | Development of a strategy to functionalize a dextrin-based hydrogel for animal cell cultures using a starch-binding module fused to RGD sequence. BMC Biotechnology, 2008, 8, 78.                                                     | 3.3  | 12        |
| 138 | Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its<br>N-glycosylation pathway. Carbohydrate Research, 2013, 381, 19-27.                                                                         | 2.3  | 12        |
| 139 | Modification of paper properties using carbohydrate-binding module 3 from the Clostridium thermocellum CipA scaffolding protein produced in Pichia pastoris: elucidation of the glycosylation effect. Cellulose, 2015, 22, 2755-2765. | 4.9  | 12        |
| 140 | Economic determinants on the implementation of a Eucalyptus wood biorefinery producing biofuels, energy and high added-value compounds. Applied Energy, 2021, 303, 117662.                                                            | 10.1 | 12        |
| 141 | Comparative transcriptome analysis between original and evolved recombinant lactoseâ€consuming<br><i>Saccharomyces cerevisiae</i> strains. Biotechnology Journal, 2008, 3, 1591-1597.                                                 | 3.5  | 11        |
| 142 | Differentiation of human pre-adipocytes by recombinant adiponectin. Protein Expression and Purification, 2008, 59, 122-126.                                                                                                           | 1.3  | 11        |
| 143 | Bacterial Activity in Heavy Metals Polluted Soils: Metal Efflux Systems in Native Rhizobial Strains.<br>Geomicrobiology Journal, 2009, 26, 281-288.                                                                                   | 2.0  | 11        |
|     |                                                                                                                                                                                                                                       |      |           |

144 Valorization of lignocellulosic-based wastes. , 2020, , 383-410.

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Stimulation of Zero- <i>trans</i> Rates of Lactose and Maltose Uptake into Yeasts by Preincubation with Hexose To Increase the Adenylate Energy Charge. Applied and Environmental Microbiology, 2008, 74, 3076-3084. | 3.1 | 10        |
| 146 | Valorization of Wastes From Agrofood and Pulp and Paper Industries Within the Biorefinery Concept:<br>Southwestern Europe Scenario. , 2018, , 487-504.                                                               |     | 10        |
| 147 | Expression of Yarrowia lipolytica acetyl-CoA carboxylase in Saccharomyces cerevisiae and its effect on in-vivo accumulation of Malonyl-CoA. Computational and Structural Biotechnology Journal, 2022, 20, 779-787.   | 4.1 | 10        |
| 148 | Nonthyroidal illness syndrome in patients with subarachnoid hemorrhage due to intracranial<br>aneurysm. Arquivos De Neuro-Psiquiatria, 2004, 62, 26-32.                                                              | 0.8 | 9         |
| 149 | Investigation of protein secretion and secretion stress in Ashbya gossypii. BMC Genomics, 2014, 15, 1137.                                                                                                            | 2.8 | 9         |
| 150 | Bare silica as an alternative matrix for affinity purification/immobilization of His-tagged proteins.<br>Separation and Purification Technology, 2022, 286, 120448.                                                  | 7.9 | 8         |
| 151 | Rapid and sensitive detection of b-galactosidase-producing yeasts by using microtiter plate assay.<br>Biotechnology Letters, 1997, 11, 399-402.                                                                      | 0.5 | 7         |
| 152 | Ohmic Heating Extract of Vine Pruning Residue Has Anti-Colorectal Cancer Activity and Increases Sensitivity to the Chemotherapeutic Drug 5-FU. Foods, 2020, 9, 1102.                                                 | 4.3 | 7         |
| 153 | Transformation of a flocculatingSaccharomyces cerevisiae using lithium acetate and pYAC4. Journal of Basic Microbiology, 1999, 39, 37-41.                                                                            | 3.3 | 6         |
| 154 | Production of a Distilled Spirit Using Cassava Flour as Raw Material: Chemical Characterization and Sensory Profile. Molecules, 2020, 25, 3228.                                                                      | 3.8 | 6         |
| 155 | Evaluation of multi-starter S. cerevisiae/ D. bruxellensis cultures for mimicking and accelerating transformations occurring during barrel ageing of beer. Food Chemistry, 2020, 323, 126826.                        | 8.2 | 6         |
| 156 | Reuse of oak chips for modification of the volatile fraction of alcoholic beverages. LWT - Food<br>Science and Technology, 2021, 135, 110046.                                                                        | 5.2 | 6         |
| 157 | The Inhibitory Effect of an RGD-Human Chitin-Binding Domain Fusion Protein on the Adhesion of<br>Fibroblasts to Reacetylated Chitosan Films. Molecular Biotechnology, 2008, 40, 269-279.                             | 2.4 | 5         |
| 158 | Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process. Chemical Papers, 2013, 67, .                                                    | 2.2 | 5         |
| 159 | Light exposure during growth increases riboflavin production, ROS accumulation and DNA damage in<br>Ashbya gossypii riboflavin-overproducing strains. FEMS Yeast Research, 2019, 19, .                               | 2.3 | 5         |
| 160 | Production of Hemicellulases, Xylitol, and Furan from Hemicellulosic Hydrolysates Using<br>Hydrothermal Pretreatment. , 2017, , 285-315.                                                                             |     | 5         |
| 161 | Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics, 2022, 114, 110386.                                                               | 2.9 | 5         |
| 162 | Strategic combination of different promoters in lactose metabolisation and host chassis selection for high bioethanol titres from dairy wastes. Bioresource Technology Reports, 2022, 19, 101131.                    | 2.7 | 5         |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | RAPD/SCAR Approaches for Identification of Adulterant Breeds' Milk in Dairy Products. Methods in<br>Molecular Biology, 2017, 1620, 183-193.                                                             | 0.9 | 4         |
| 164 | Biotechnological Advancements, Innovations and Challenges for Sustainable Xylitol Production by Yeast. , 2021, , 420-427.                                                                               |     | 4         |
| 165 | Kinetics of lactose fermentation using a recombinantSaccharomyces cerevisiae strain. Biotechnology and Bioengineering, 2006, 94, 1147-1154.                                                             | 3.3 | 3         |
| 166 | Principles of Genetic Engineering. , 2017, , 81-127.                                                                                                                                                    |     | 3         |
| 167 | Production and Bioengineering of Recombinant Pharmaceuticals. , 2019, , 259-293.                                                                                                                        |     | 3         |
| 168 | Synthesis of Fusion Genes for Cloning by Megaprimer-Based PCR. Methods in Molecular Biology, 2017, 1620, 101-112.                                                                                       | 0.9 | 3         |
| 169 | Saccharomyces cerevisiae Cells Lacking the Zinc Vacuolar Transporter Zrt3 Display Improved Ethanol<br>Productivity in Lignocellulosic Hydrolysates. Journal of Fungi (Basel, Switzerland), 2022, 8, 78. | 3.5 | 3         |
| 170 | A novel adjuvant-free H fusion system for the production of recombinant immunogens<br>in <i><i>Escherichia coli</i></i> . Bioengineered, 2013, 4, 413-419.                                              | 3.2 | 2         |
| 171 | Quantitative assessment of DNA damage in the industrial ethanol production strain Saccharomyces cerevisiae PE-2. FEMS Yeast Research, 2018, 18, .                                                       | 2.3 | 2         |
| 172 | Cytotoxicity of Frutalin on Distinct Cancer Cells Is Independent of Its Glycosylation. Molecules, 2021, 26, 4712.                                                                                       | 3.8 | 1         |
| 173 | Integrated technologies for extractives recovery, fractionation, and bioethanol production from lignocellulose. , 2022, , 107-139.                                                                      |     | 1         |
| 174 | Orotic acid production from crude glycerol by engineered Ashbya gossypii. Bioresource Technology<br>Reports, 2022, 17, 100992.                                                                          | 2.7 | 1         |
| 175 | Dairy. Contemporary Food Engineering, 2013, , 295-326.                                                                                                                                                  | 0.2 | Ο         |
| 176 | The crystal structure of the R280K mutant of human p53 explains the loss of DNA binding. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e192-e192.                               | 0.1 | 0         |