José Francisco Cambra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7702588/publications.pdf

Version: 2024-02-01

22 papers 596

12 h-index

758635

713013 21 g-index

22 all docs 22 docs citations

times ranked

22

901 citing authors

#	Article	IF	CITATIONS
1	Effect of the Addition of Alkaline Earth and Lanthanide Metals for the Modification of the Alumina Support in Ni and Ru Catalysts in CO2 Methanation. Catalysts, 2021, 11, 353.	1.6	14
2	A study of deactivation by H ₂ S and regeneration of a Ni catalyst supported on Al ₂ O ₃ , during methanation of CO ₂ . Effect of the promoters Co, Cr, Fe and Mo. RSC Advances, 2020, 10, 16551-16564.	1.7	25
3	Heterogeneous Catalyzed Thermochemical Conversion of Lignin Model Compounds: An Overview. Topics in Current Chemistry Collections, 2020, , 197-271.	0.2	1
4	Heterogeneous Catalyzed Thermochemical Conversion of Lignin Model Compounds: An Overview. Topics in Current Chemistry, 2019, 377, 36.	3.0	13
5	Catalyst Deactivation and Regeneration Processes in Biogas Tri-Reforming Process. The Effect of Hydrogen Sulfide Addition. Catalysts, 2018, 8, 12.	1.6	38
6	Hydrogen Production with a Microchannel Reactor by Tri-Reforming; Reaction System Comparison and Catalyst Development. Topics in Catalysis, 2017, 60, 1210-1225.	1.3	3
7	Levulinic Acid Production Using Solid-Acid Catalysis. Industrial & Engineering Chemistry Research, 2016, 55, 5139-5144.	1.8	35
8	Sustainable hydrogen production from bio-oil model compounds (meta-xylene) and mixtures (1-butanol, meta-xylene and furfural). Bioresource Technology, 2016, 216, 287-293.	4.8	20
9	Recent Improvement on H2 Production by Liquid Phase Reforming of Glycerol: Catalytic Properties and Performance, and Deactivation Studies. Topics in Catalysis, 2014, 57, 1066-1077.	1.3	30
10	Microwave Synthesis of LTL Zeolites with Tunable Size and Morphology: An Optimal Support for Metalâ€Catalyzed Hydrogen Production from Biogas Reforming Processes. Particle and Particle Systems Characterization, 2014, 31, 110-120.	1.2	11
11	Natural and synthetic iron oxides for hydrogen storage and purification. Journal of Materials Science, 2013, 48, 4813-4822.	1.7	7
12	Acetalization reaction between glycerol and n-butyraldehyde using an acidic ion exchange resin. Kinetic modelling. Chemical Engineering Journal, 2013, 228, 300-307.	6.6	44
13	Bio n-Butanol Partial Oxidation to Butyraldehyde in Gas Phase on Supported Ru and Cu Catalysts. Catalysis Letters, 2012, 142, 417-426.	1.4	22
14	Biobutanol Dehydrogenation to Butyraldehyde over Cu, Ru and Ru–Cu Supported Catalysts. Noble Metal Addition and Different Support Effects. Catalysis Letters, 2012, 142, 50-59.	1.4	8
15	Catalytic reactive distillation process development for 1,1 diethoxy butane production from renewable sources. Bioresource Technology, 2011, 102, 1289-1297.	4.8	18
16	Hydrometallurgical Processes Development for Zinc Oxide Production from Waelz Oxide. Waste and Biomass Valorization, 2010, 1, 329-337.	1.8	3
17	Hydrogen Production from Glycerol Over Nickel Catalysts Supported on Al2O3 Modified by Mg, Zr, Ce or La. Topics in Catalysis, 2008, 49, 46-58.	1.3	224
18	Recycling of the Products Obtained in the Pyrolysis of Fibre-Glass Polyester SMC. Journal of Chemical Technology and Biotechnology, 1997, 69, 187-192.	1.6	47

#	Article	IF	CITATIONS
19	Effect of fluorine on hydrodenitrogenation activity of doubly promoted (Zn + Co) molybdena-alumina catalysts. Fuel, 1995, 74, 285-290.	3.4	6
20	HDS AND HDN ACTIVITY AND CHARACTERIZATION OF NiMo â€USY ZEOLITE CATALYSTS. Bulletin Des SociétÃ Chimiques Belges, 1995, 104, 197-204.	©s 0.0	14
21	Hydrodesulfurizationâ€Hydrogenation of Niâ€Containing Ultrastable HY Zeolites. Bulletin Des Sociétés Chimiques Belges, 1991, 100, 915-921.	0.0	10
22	Linde Type L Zeolite: A Privileged Porous Support to Develop Photoactive and Catalytic Nanomaterials. , 0, , .		3