
Yiren Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7702529/publications.pdf Version: 2024-02-01

YIDEN WANC

#	Article	IF	CITATIONS
1	Solute Segregation to Grain Boundaries in Al: A First-Principles Evaluation. Acta Metallurgica Sinica (English Letters), 2022, 35, 1572-1582.	1.5	10
2	Prediction on Phase Stabilities of the Zr–H System from the First-Principles. Acta Metallurgica Sinica (English Letters), 2021, 34, 514-522.	1.5	2
3	Dopants and grain boundary effects in monolayer MoS ₂ : a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 11937-11943.	1.3	4
4	Nucleation of Y–Si–O Nano-clusters in Multi-microalloyed Nano-structured Ferritic Alloys: a First-principles Study. Acta Metallurgica Sinica (English Letters), 2021, 34, 955-962.	1.5	7
5	Interfacial <scp>adsorption–insertion</scp> mechanism induced by phase boundary toward better aqueous <scp>Znâ€ion</scp> battery. InformaÄnÃ-Materiály, 2021, 3, 1028-1036.	8.5	194
6	Structures and adhesion of hcp thin film coating interfaces on a single-crystal bcc substrate by PVD: Ti/Mo and Zr/Mo. Computational Materials Science, 2020, 174, 109504.	1.4	6
7	Oxygen Defects in β-MnO2 Enabling High-Performance Rechargeable Aqueous Zinc/Manganese Dioxide Battery. IScience, 2020, 23, 100797.	1.9	184
8	First-principles study of vacancy defects at interfaces between monolayer MoS ₂ and Au. RSC Advances, 2020, 10, 28725-28730.	1.7	9
9	Observation of yttrium oxide segregation in a ZrO ₂ ‣iO ₂ glassâ€ceramic at nanometer dimensions. Journal of the American Ceramic Society, 2020, 103, 7147-7158.	1.9	9
10	Incoherent tilt grain boundaries stabilized by stacking faults and solute-cluster segregation: a case-study of an Mg-Gd alloy. Materials Research Letters, 2020, 8, 268-274.	4.1	11
11	Intrinsic or Interface Clustering-Induced Ferromagnetism in Fe-Doped In ₂ O ₃ -Diluted Magnetic Semiconductors. ACS Applied Materials & Interfaces, 2018, 10, 22372-22380.	4.0	23
12	Defects engineering induced room temperature ferromagnetism in transition metal doped MoS 2. Materials and Design, 2017, 121, 77-84.	3.3	97
13	Inducing High Coercivity in MoS ₂ Nanosheets by Transition Element Doping. Chemistry of Materials, 2017, 29, 9066-9074.	3.2	81
14	Electronic and Magnetic Properties of Transition-Metal-Doped Monolayer Black Phosphorus by Defect Engineering. Journal of Physical Chemistry C, 2016, 120, 9773-9779.	1.5	43
15	Electronic and magnetic properties of Co doped MoS2 monolayer. Scientific Reports, 2016, 6, 24153.	1.6	94
16	Zn vacancy induced ferromagnetism in K doped ZnO. Journal of Materials Chemistry C, 2015, 3, 11953-11958.	2.7	43
17	Magnetic properties in α-MnO2 doped with alkaline elements. Scientific Reports, 2015, 5, 9094.	1.6	57
18	Effects of rare-earth dopants on the thermally grown Al2O3/Ni(Al) interface: the first-principles prediction. Journal of Materials Science, 2014, 49, 2640-2646.	1.7	17

#	Article	IF	CITATIONS
19	Surface Structures and Their Relative Stabilities of Orthorhombic YAlO3: A First-Principles Study. Acta Metallurgica Sinica (English Letters), 0, , .	1.5	0