Shuji Fujii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7701744/publications.pdf

Version: 2024-02-01

687363 752698 46 441 13 20 citations h-index g-index papers 48 48 48 373 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	A Study on the Condition of No Shear-Induced Structure Generation in Wormlike Micelle Solutions. Nihon Reoroji Gakkaishi, 2022, 50, 235-243.	1.0	2
2	Shear-enhanced elasticity in the cubic blue phase I. Physical Review E, 2021, 103, 052704.	2.1	0
3	Negative viscosity of liquid crystals in the presence of turbulence: Conductivity dependence, phase diagram, and self-oscillation. Physical Review E, 2020, 101, 022702.	2.1	2
4	Negative viscosity of a liquid crystal in the presence of turbulence. Physical Review E, 2019, 99, 012701.	2.1	7
5	Notes on the slow dynamics in dilute lyotropic lamellar phase. Journal of Biorheology, 2019, 33, 8-12.	0.5	O
6	Microrheology of Microtubule Aqueous Solution. Biophysical Journal, 2018, 114, 506a.	0.5	0
7	Tunable two-dimensional polarization grating using a self-organized micropixelated liquid crystal structure. RSC Advances, 2018, 8, 41472-41479.	3.6	9
8	Formation of Shear Band in a Microtubule Solution. Biophysical Journal, 2018, 114, 506a.	0.5	0
9	Random migration of induced pluripotent stem cell-derived human gastrulation-stage mesendoderm. PLoS ONE, 2018, 13, e0201960.	2.5	5
10	Nonlinear Rheology and Fracture of Disclination Network in Cholesteric Blue Phase III. Fluids, 2018, 3, 34.	1.7	4
11	Anomalous Diffusion of Particles Dispersed in Xanthan Solutions Subjected to Shear Flow. Journal of the Physical Society of Japan, 2018, 87, 054005.	1.6	1
12	Polymerâ€Stabilized Micropixelated Liquid Crystals with Tunable Optical Properties Fabricated by Double Templating. Advanced Materials, 2017, 29, 1703054.	21.0	26
13	Rheological characterization of thermal phase behavior of anionic lipid DMPG dispersions. Journal of Biorheology, 2017, 31, 6-11.	0.5	2
14	Kinetics of the orientation transition in the lyotropic lamellar phase. Journal of Biorheology, 2016, 30, 27-33.	0.5	2
15	Shear-Thinning Characteristics of Nematic Liquid Crystals Doped with Nanoparticles. Crystals, 2016, 6, 145.	2.2	3
16	Preparation of nanocrystalline zinc-substituted hydroxyapatite films and their biological properties. Colloids and Interface Science Communications, 2016, 10-11, 15-19.	4.1	26
17	Non-linear viscoelasticity analysis for CTAB/NaSal wormlike micellar solution in large amplitude oscillatory shear. Transactions of the JSME (in Japanese), 2015, 81, 14-00615-14-00615.	0.2	O
18	Transient behavior of stress in a wormlike micellar solution under oscillatory shear. Colloid and Polymer Science, 2015, 293, 3237-3248.	2.1	3

#	Article	IF	Citations
19	Structural rheology of composite onion phase. Journal of Biorheology, 2015, 29, 28-35.	0.5	1
20	Dynamic orientation transition of the lyotropic lamellar phase at high shear rates. Soft Matter, 2015, 11, 9330-9341.	2.7	15
21	Nonequilibrium Structure Formation of Complex Bilayer Membrane Lamellar Phase Under Shear., 2015, , 77-97.		0
22	Structural Rheology of the Smectic Phase. Materials, 2014, 7, 5146-5168.	2.9	15
23	Structural rheology of focal conic domains: a stress-quench experiment. Soft Matter, 2014, 10, 5289.	2.7	8
24	Orientation transition of defective lyotropic triblock copolymer lamellar phase. Journal of Biorheology, 2014, 28, 55-60.	0.5	4
25	Shear quench-induced disintegration of a nonionic surfactant C10E3 onion phase. Soft Matter, 2013, 9, 5391.	2.7	10
26	Shear-induced Onion Formation of Triblock Copolymer-embedded Surfactant Lamellar Phase. Nihon Reoroji Gakkaishi, 2013, 41, 29-34.	1.0	5
27	Structural Rheology of Smectic Liquid Crystalline Phase. Nihon Reoroji Gakkaishi, 2013, 40, 229-237.	1.0	1
28	Shear-induced onion formation of polymer-grafted lamellar phase. Soft Matter, 2012, 8, 5381.	2.7	19
29	Nonlinear Viscoelasticity of Rubber Materials: Payne Effect and Differential Dynamic Modulus. E-Journal of Soft Materials, 2011, 7, 1-7.	2.0	1
30	Elasticity of smectic liquid crystals with focal conic domains. Journal of Physics Condensed Matter, 2011, 23, 235105.	1.8	20
31	Flow-Induced Multilamellar Vesicle Formation of Bilayer Membrane Systems. Nippon Gomu Kyokaishi, 2010, 83, 95-102.	0.0	0
32	Smectic rheology close to the smectic-nematic transition. Europhysics Letters, 2010, 90, 64001.	2.0	21
33	Multilamellar vesicles ("onionsâ€) under shear quench: pathway of discontinuous size growth. Rheologica Acta, 2009, 48, 231-240.	2.4	24
34	Influence of a Triblock Copolymer on Phase Behavior and Shear-Induced Topologies of a Surfactant Lamellar Phase. Langmuir, 2009, 25, 5476-5483.	3.5	21
35	FIB-SEM and TEMT Observation of Highly Elastic Rubbery Material with Nanomatrix Structure. Macromolecules, 2008, 41, 4510-4513.	4.8	37
36	Shear Induced Structures in Lamellar Systems. Progress of Theoretical Physics Supplement, 2008, 175, 154-165.	0.1	12

#	Article	IF	CITATIONS
37	Chain Anisotropy Effect on Polymer Nonlinear Viscoelasticity. E-Journal of Soft Materials, 2008, 4, 1-6.	2.0	2
38	Viscoelasticity of Onion Phase Composed of Complex Surfactant Bilayers. Transactions of the Materials Research Society of Japan, 2008, 33, 425-426.	0.2	1
39	Novel Characterization of Filler Network in Rubber Materials Using Differential Dynamic Modulus in Large Compression and Recovery. E-Journal of Soft Materials, 2007, 3, 14-20.	2.0	16
40	Differential Dynamic Modulus of Carbon Black Filled, Uncured SBR in Single-Step Large Shearing Deformations. E-Journal of Soft Materials, 2007, 3, 29-40.	2.0	24
41	Filler Effects on Temperature Dependence of Viscoelastic Properties of Filled Rubbers. E-Journal of Soft Materials, 2007, 3, 41-48.	2.0	8
42	Size and viscoelasticity of spatially confined multilamellar vesicles. European Physical Journal E, 2006, 19, 139-148.	1.6	38
43	Process Control of Loss Factor in Soft Materials. Advanced Materials Research, 2006, 11-12, 725-728.	0.3	0
44	Filler Network Change and Nonlinear Viscoelasticity of Rubbers. Advanced Materials Research, 2006, 11-12, 729-732.	0.3	3
45	Reversible size of shear-induced multi-lamellar vesicles. Colloid and Polymer Science, 2005, 284, 317-321.	2.1	38
46	Shear-induced structural transformation of pentaethylene glycol n-dodecyl ether and lithium perfluorooctane sulfonate mixed-surfactant lamellar solution. Colloid and Polymer Science, 2003, 281, 439-446.	2.1	5