Sreeramaiah N Gangappa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7701554/publications.pdf

Version: 2024-02-01

23 papers 2,260 citations

471509 17 h-index 642732 23 g-index

23 all docs

23 docs citations

times ranked

23

2726 citing authors

#	Article	IF	CITATIONS
1	The Multifaceted Roles of HY5 in Plant Growth and Development. Molecular Plant, 2016, 9, 1353-1365.	8.3	465
2	The BBX family of plant transcription factors. Trends in Plant Science, 2014, 19, 460-470.	8.8	370
3	A Basic Helix-Loop-Helix Transcription Factor in Arabidopsis, MYC2, Acts as a Repressor of Blue Light–Mediated Photomorphogenic Growth. Plant Cell, 2005, 17, 1953-1966.	6.6	254
4	The <i>Arabidopsis</i> B-BOX Protein BBX25 Interacts with HY5, Negatively Regulating <i>BBX22</i> Expression to Suppress Seedling Photomorphogenesis Â. Plant Cell, 2013, 25, 1243-1257.	6.6	189
5	Convergence of Light and ABA Signaling on the ABI5 Promoter. PLoS Genetics, 2014, 10, e1004197.	3.5	163
6	<i>Arabidopsis</i> CAM7 and HY5 Physically Interact and Directly Bind to the <i>HY5</i> Promoter to Regulate Its Expression and Thereby Promote Photomorphogenesis. Plant Cell, 2014, 26, 1036-1052.	6.6	150
7	DET1 and HY5 Control PIF4-Mediated Thermosensory Elongation Growth through Distinct Mechanisms. Cell Reports, 2017, 18, 344-351.	6.4	132
8	PIF4 Coordinates Thermosensory Growth and Immunity in Arabidopsis. Current Biology, 2017, 27, 243-249.	3.9	116
9	SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis. Molecular Plant, 2016, 9, 1051-1065.	8.3	80
10	Functional Interconnection of MYC2 and SPA1 in the Photomorphogenic Seedling Development of Arabidopsis. Plant Physiology, 2010, 154, 1210-1219.	4.8	59
11	Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate <i>Arabidopsis</i> seedling development. Plant Signaling and Behavior, 2013, 8, e25208.	2.4	52
12	Interaction of <scp>MYC</scp> 2 and <scp>GBF</scp> 1 results in functional antagonism in blue lightâ€mediated Arabidopsis seedling development. Plant Journal, 2015, 83, 439-450.	5.7	36
13	Functional interrelation of <scp>MYC</scp> 2 and <scp>HY</scp> 5 plays an important role in Arabidopsis seedling development. Plant Journal, 2019, 99, 1080-1097.	5.7	30
14	Z-Box Binding Transcription Factors (ZBFs): A New Class of Transcription Factors in Arabidopsis Seedling Development. Molecular Plant, 2013, 6, 1758-1768.	8.3	29
15	The Regulation of the Z- and G-Box Containing Promoters by Light Signaling Components, SPA1 and MYC2, in Arabidopsis. PLoS ONE, 2013, 8, e62194.	2.5	26
16	MYC2, a bHLH transcription factor, modulates the adult phenotype of SPA1. Plant Signaling and Behavior, 2010, 5, 1650-1652.	2.4	25
17	SHW1 Interacts with HY5 and COP1, and Promotes COP1-mediated Degradation of HY5 During Arabidopsis Seedling Development. Plant Physiology, 2015, 169, pp.01184.2015.	4.8	25
18	DET1 and COP1 Modulate the Coordination of Growth and Immunity in Response to Key Seasonal Signals in Arabidopsis. Cell Reports, 2018, 25, 29-37.e3.	6.4	22

#	Article	IF	CITATIONS
19	SHORT HYPOCOTYL IN WHITE LIGHT1, a Serine-Arginine-Aspartate-Rich Protein in Arabidopsis, Acts as a Negative Regulator of Photomorphogenic Growth A. Plant Physiology, 2008, 147, 169-178.	4.8	16
20	MYC2 differentially regulates GATA-box conaining promoters during seedling development in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2013, 8, e25679.	2.4	13
21	<scp>COP</scp> 1 regulates the stability of <scp>CAM</scp> 7 to promote photomorphogenic growth. Plant Direct, 2019, 3, e00144.	1.9	6
22	SHW1, a common regulator of abscisic acid (ABA) and light signaling pathways. Plant Signaling and Behavior, 2008, 3, 862-864.	2.4	1
23	DET1 regulates HY5 through COP1: A new paradigm in the regulation of HY5. Molecular Plant, 2021, 14, 864-866.	8.3	1