Michael R Stallcup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7701243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How Protein Methylation Regulates Steroid Receptor Function. Endocrine Reviews, 2022, 43, 160-197.	8.9	13
2	Gene-Specific Actions of Transcriptional Coregulators Facilitate Physiological Plasticity: Evidence for a Physiological Coregulator Code. Trends in Biochemical Sciences, 2020, 45, 497-510.	3.7	35
3	Relapse-associated AURKB blunts the glucocorticoid sensitivity of B cell acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3052-3061.	3.3	32
4	Increasing G9a automethylation sensitizes B acute lymphoblastic leukemia cells to glucocorticoid-induced death. Cell Death and Disease, 2018, 9, 1038.	2.7	23
5	Aberrant expression of SETD1A promotes survival and migration of estrogen receptor αâ€positive breast cancer cells. International Journal of Cancer, 2018, 143, 2871-2883.	2.3	32
6	Different chromatin and DNA sequence characteristics define glucocorticoid receptor binding sites that are blocked or not blocked by coregulator Hic-5. PLoS ONE, 2018, 13, e0196965.	1.1	8
7	A postâ€ŧranslational modification switch controls coactivator function of histone methyltransferases G9a and GLP. EMBO Reports, 2017, 18, 1442-1459.	2.0	32
8	Glucocorticoid receptor binding to chromatin is selectively controlled by the coregulator Hic-5 and chromatin remodeling enzymes. Journal of Biological Chemistry, 2017, 292, 9320-9334.	1.6	17
9	Identifying differential transcription factor binding in ChIP-seq. Frontiers in Genetics, 2015, 6, 169.	1.1	29
10	Selective Coregulator Function and Restriction of Steroid Receptor Chromatin Occupancy by Hic-5. Molecular Endocrinology, 2015, 29, 716-729.	3.7	19
11	Distinct, Genome-Wide, Gene-Specific Selectivity Patterns of Four Glucocorticoid Receptor Coregulators. Nuclear Receptor Signaling, 2014, 12, nrs.12002.	1.0	26
12	Hic-5 is a transcription coregulator that acts before and/or after glucocorticoid receptor genome occupancy in a gene-selective manner. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4007-4012.	3.3	48
13	Coregulator Cell Cycle and Apoptosis Regulator 1 (CCAR1) Positively Regulates Adipocyte Differentiation through the Glucocorticoid Signaling Pathway. Journal of Biological Chemistry, 2014, 289, 17078-17086.	1.6	32
14	Role of distinct surfaces of the G9a ankyrin repeat domain in histone and DNA methylation during embryonic stem cell self-renewal and differentiation. Epigenetics and Chromatin, 2014, 7, 27.	1.8	17
15	Gene-Specific Patterns of Coregulator Requirements by Estrogen Receptor-α in Breast Cancer Cells. Molecular Endocrinology, 2012, 26, 955-966.	3.7	62
16	G9a functions as a molecular scaffold for assembly of transcriptional coactivators on a subset of Glucocorticoid Receptor target genes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19673-19678.	3.3	119
17	Recruitment of coregulator G9a by Runx2 for selective enhancement or suppression of transcription. Journal of Cellular Biochemistry, 2012, 113, 2406-2414.	1.2	43
18	Recognition of enhancer element–specific histone methylation by TIP60 in transcriptional activation. Nature Structural and Molecular Biology, 2011, 18, 1358-1365.	3.6	124

MICHAEL R STALLCUP

#	Article	IF	CITATIONS
19	A Distinct Mechanism for Coactivator versus Corepressor Function by Histone Methyltransferase G9a in Transcriptional Regulation. Journal of Biological Chemistry, 2011, 286, 41963-41971.	1.6	74
20	Regulated recruitment of tumor suppressor BRCA1 to the p21 gene by coactivator methylation. Genes and Development, 2011, 25, 176-188.	2.7	60
21	Minireview: Protein Arginine Methylation of Nonhistone Proteins in Transcriptional Regulation. Molecular Endocrinology, 2009, 23, 425-433.	3.7	187
22	The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nature Structural and Molecular Biology, 2008, 15, 245-250.	3.6	250
23	CCAR1, a Key Regulator of Mediator Complex Recruitment to Nuclear Receptor Transcription Complexes. Molecular Cell, 2008, 31, 510-519.	4.5	133
24	Transcriptional Intermediary Factor 1α Mediates Physical Interaction and Functional Synergy between the Coactivator-Associated Arginine Methyltransferase 1 and Glucocorticoid Receptor-Interacting Protein 1 Nuclear Receptor Coactivators. Molecular Endocrinology, 2006, 20, 1276-1286.	3.7	44
25	Histone H3 Lysine 9 Methyltransferase G9a Is a Transcriptional Coactivator for Nuclear Receptors*. Journal of Biological Chemistry, 2006, 281, 8476-8485.	1.6	168
26	Role of Protein Methylation in Regulation of Transcription. Endocrine Reviews, 2005, 26, 147-170.	8.9	392
27	Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3611-3616.	3.3	209
28	Synergistic Effects of Coactivators GRIP1 and β-Catenin on Gene Activation. Journal of Biological Chemistry, 2004, 279, 4212-4220.	1.6	64
29	CoCoA, a Nuclear Receptor Coactivator which Acts through an N-Terminal Activation Domain of p160 Coactivators. Molecular Cell, 2003, 12, 1537-1549.	4.5	116
30	Methylation of Histone H3 by Coactivator-Associated Arginine Methyltransferase 1. Biochemistry, 2001, 40, 5747-5756.	1.2	297
31	Mouse Zac1, a Transcriptional Coactivator and Repressor for Nuclear Receptors. Molecular and Cellular Biology, 2000, 20, 1855-1867.	1.1	144
32	Interaction of the τ2 Transcriptional Activation Domain of Glucocorticoid Receptor with a Novel Steroid Receptor Coactivator, Hic-5, Which Localizes to Both Focal Adhesions and the Nuclear Matrix. Molecular Biology of the Cell, 2000, 11, 2007-2018.	0.9	122
33	Regulation of Transcription by a Protein Methyltransferase. Science, 1999, 284, 2174-2177.	6.0	1,083
34	Nuclear Receptor-Binding Sites of Coactivators Glucocorticoid Receptor Interacting Protein 1 (GRIP1) and Steroid Receptor Coactivator 1 (SRC-1): Multiple Motifs with Different Binding Specificities. Molecular Endocrinology, 1998, 12, 302-313.	3.7	379
35	Localization of the mouse glucocorticoid receptor-interacting protein 1 gene (Grip1) to proximal Chromosome 1 by linkage analysis. Mammalian Genome, 1997, 8, 620-621.	1.0	1