
## Pascal Kienlen-Campard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7701165/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF      | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| 1  | An evaluation of the self-assembly enhancing properties of cell-derived hexameric amyloid-β. Scientific Reports, 2021, 11, 11570.                                                                                 | 3.3     | 9         |
| 2  | Overexpression of wild-type human amyloid precursor protein alters GABAergic transmission.<br>Scientific Reports, 2021, 11, 17600.                                                                                | 3.3     | 11        |
| 3  | How to Build and to Protect the Neuromuscular Junction: The Role of the Glial Cell Line-Derived Neurotrophic Factor. International Journal of Molecular Sciences, 2021, 22, 136.                                  | 4.1     | 16        |
| 4  | Mechanism of Cellular Formation and In Vivo Seeding Effects of Hexameric β-Amyloid Assemblies.<br>Molecular Neurobiology, 2021, 58, 6647-6669.                                                                    | 4.0     | 8         |
| 5  | Presenilin-Deficient Neurons and Astrocytes Display Normal Mitochondrial Phenotypes. Frontiers in<br>Neuroscience, 2020, 14, 586108.                                                                              | 2.8     | 6         |
| 6  | Amyloid Precursor Protein (APP) Controls the Expression of the Transcriptional Activator Neuronal<br>PAS Domain Protein 4 (NPAS4) and Synaptic GABA Release. ENeuro, 2020, 7, ENEURO.0322-19.2020.                | 1.9     | 24        |
| 7  | Dimeric Transmembrane Orientations of APP/C99 Regulate Î <sup>3</sup> -Secretase Processing Line Impacting Signaling and Oligomerization. IScience, 2020, 23, 101887.                                             | 4.1     | 9         |
| 8  | Influence of the familial Alzheimer's disease–associated T43I mutation on the transmembrane<br>structure and γ-secretase processing of the C99 peptide. Journal of Biological Chemistry, 2019, 294,<br>5854-5866. | 3.4     | 5         |
| 9  | Sex-regulated gene dosage effect of PPARα on synaptic plasticity. Life Science Alliance, 2019, 2, e201800262.                                                                                                     | 2.8     | 16        |
| 10 | Specificity of presenilinâ€1―and presenilinâ€2â€dependent γâ€secretases towards substrate processing. Journa<br>of Cellular and Molecular Medicine, 2018, 22, 823-833.                                            | <br>3.6 | 23        |
| 11 | Contribution of the Endosomal-Lysosomal and Proteasomal Systems in Amyloid-Î <sup>2</sup> Precursor Protein Derived Fragments Processing. Frontiers in Cellular Neuroscience, 2018, 12, 435.                      | 3.7     | 24        |
| 12 | A Role for GDNF and Soluble APP as Biomarkers of Amyotrophic Lateral Sclerosis Pathophysiology.<br>Frontiers in Neurology, 2018, 9, 384.                                                                          | 2.4     | 33        |
| 13 | Tau interactome mappingÂbased identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathologica, 2017, 133, 731-749.                   | 7.7     | 74        |
| 14 | Cortical cells reveal APP as a new player in the regulation of GABAergic neurotransmission. Scientific Reports, 2017, 7, 370.                                                                                     | 3.3     | 31        |
| 15 | [P4–037]: IDENTIFICATION OF NOVEL TARGETS FOR INHIBITING PRIONâ€LIKE SEEDING AND PROPAGATION OF TAU PATHOLOGY IN VITRO AND IN VIVO. Alzheimer's and Dementia, 2017, 13, P1270.                                    | 0.8     | 0         |
| 16 | β-Sheet Structure within the Extracellular Domain of C99 Regulates Amyloidogenic Processing.<br>Scientific Reports, 2017, 7, 17159.                                                                               | 3.3     | 17        |
| 17 | Presenilin 2-Dependent Maintenance of Mitochondrial Oxidative Capacity and Morphology. Frontiers in Physiology, 2017, 8, 796.                                                                                     | 2.8     | 40        |
| 18 | Glycines from the APP GXXXG/GXXXA Transmembrane Motifs Promote Formation of Pathogenic AÎ <sup>2</sup><br>Oligomers in Cells. Frontiers in Aging Neuroscience, 2016, 8, 107.                                      | 3.4     | 28        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | O5-04-01: MOLECULAR MECHANISMS OF ABETA-INDUCED TAU-PATHOLOGY: ANALYSIS OF CROSS-SEEDING OF ABETA AND TAU AND ITS ROLE IN PRION-LIKE PROPAGATION OF TAU-PATHOLOGY IN VITRO AND IN VIVO. , 2016, 12, P385-P385.             |     | 0         |
| 20 | Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component<br>ASC and its implication in a mouse model of Alzheimer disease. Journal of Neuroinflammation, 2016, 13,<br>20.       | 7.2 | 73        |
| 21 | APPâ€dependent glial cell lineâ€derived neurotrophic factor gene expression drives neuromuscular<br>junction formation. FASEB Journal, 2016, 30, 1696-1711.                                                                | 0.5 | 27        |
| 22 | Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathologica, 2016, 131, 549-569.                        | 7.7 | 129       |
| 23 | Analysis by a highly sensitive split luciferase assay of the regions involved in APP dimerization and its impact on processing. FEBS Open Bio, 2015, 5, 763-773.                                                           | 2.3 | 25        |
| 24 | Presenilin Transmembrane Domain 8 Conserved AXXXAXXXG Motifs Are Required for the Activity of the Î <sup>3</sup> -Secretase Complex. Journal of Biological Chemistry, 2015, 290, 7169-7184.                                | 3.4 | 11        |
| 25 | Characterization of Pterocarpus erinaceus kino extract and its gamma-secretase inhibitory properties.<br>Journal of Ethnopharmacology, 2015, 163, 192-202.                                                                 | 4.1 | 17        |
| 26 | Templated misfolding of Tau by prion-like seeding along neuronal connections impairs neuronal<br>network function and associated behavioral outcomes in Tau transgenic mice. Acta<br>Neuropathologica, 2015, 129, 875-894. | 7.7 | 122       |
| 27 | Epigenetic Regulations of Immediate Early Genes Expression Involved in Memory Formation by the Amyloid Precursor Protein of Alzheimer Disease. PLoS ONE, 2014, 9, e99467.                                                  | 2.5 | 60        |
| 28 | Tauopathy contributes to synaptic and cognitive deficits in a murine model for Alzheimer's disease.<br>FASEB Journal, 2014, 28, 2620-2631.                                                                                 | 0.5 | 37        |
| 29 | Conformational Changes Induced by the A21G Flemish Mutation in the Amyloid Precursor Protein Lead to Increased Al <sup>2</sup> Production. Structure, 2014, 22, 387-396.                                                   | 3.3 | 40        |
| 30 | Gamma-Secretase Inhibitor Activity of a <b><i>Pterocarpus erinaceus</i></b><br>Extract. Neurodegenerative Diseases, 2014, 14, 39-51.                                                                                       | 1.4 | 12        |
| 31 | P1-033: AMYLOID-INDUCED TAUOPATHY CONTRIBUTES TO SYNAPTIC AND COGNITIVE DEFICITS IN A TRANSGENIC MODEL FOR ALZHEIMER'S DISEASE. , 2014, 10, P315-P315.                                                                     |     | 0         |
| 32 | Amyloid precursor protein controls cholesterol turnover needed for neuronal activity. EMBO<br>Molecular Medicine, 2013, 5, 608-625.                                                                                        | 6.9 | 88        |
| 33 | Epigenetic Induction of EGR-1 Expression by the Amyloid Precursor Protein during Exposure to Novelty. PLoS ONE, 2013, 8, e74305.                                                                                           | 2.5 | 22        |
| 34 | Contribution of Kunitz Protease Inhibitor and Transmembrane Domains to Amyloid Precursor Protein<br>Homodimerization. Neurodegenerative Diseases, 2012, 10, 92-95.                                                         | 1.4 | 12        |
| 35 | Structural features of the KPI domain control APP dimerization, trafficking, and processing. FASEB Journal, 2012, 26, 855-867.                                                                                             | 0.5 | 40        |
| 36 | What is the role of amyloid precursor protein dimerization?. Cell Adhesion and Migration, 2010, 4, 268-272.                                                                                                                | 2.7 | 36        |

| #  | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | In vitro screening on β-amyloid peptide production of plants used in traditional medicine for cognitive disorders. Journal of Ethnopharmacology, 2010, 131, 585-591.                                                                                                                             | 4.1 | 26        |
| 38 | Epigenetic control of aquaporin 1 expression by the amyloid precursor protein. FASEB Journal, 2009, 23, 4158-4167.                                                                                                                                                                               | 0.5 | 48        |
| 39 | A helix-to-coil transition at the Îμ-cut site in the transmembrane dimer of the amyloid precursor protein<br>is required for proteolysis. Proceedings of the National Academy of Sciences of the United States of<br>America, 2009, 106, 1421-1426.                                              | 7.1 | 115       |
| 40 | A Helix-to-Coil Transition in the Transmembrane Dimer of the Amyloid Precursor Protein is Required for Proteolysis by Î <sup>3</sup> -Secretase. Biophysical Journal, 2009, 96, 335a.                                                                                                            | 0.5 | 0         |
| 41 | Amyloidogenic Processing but Not Amyloid Precursor Protein (APP) Intracellular C-terminal Domain<br>Production Requires a Precisely Oriented APP Dimer Assembled by Transmembrane GXXXG Motifs.<br>Journal of Biological Chemistry, 2008, 283, 7733-7744.                                        | 3.4 | 125       |
| 42 | Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs. VOLUME 283 (2008) PAGES 7733-7744. Journal of Biological Chemistry, 2008, 283, 12680.               | 3.4 | 0         |
| 43 | Phosphorylation of APP695 at Thr668 decreases γ-cleavage and extracellular Aβ. Biochemical and Biophysical Research Communications, 2007, 357, 1004-1010.                                                                                                                                        | 2.1 | 28        |
| 44 | Fe65 does not stabilize AICD during activation of transcription in a luciferase assay. Biochemical and Biophysical Research Communications, 2007, 361, 317-322.                                                                                                                                  | 2.1 | 14        |
| 45 | Inhibitors of Amyloid Toxicity Based on β-sheet Packing of Aβ40 and Aβ42. Biochemistry, 2006, 45, 5503-5516.                                                                                                                                                                                     | 2.5 | 183       |
| 46 | Lactacystin decreases amyloid-β peptide production by inhibiting β-secretase activity. Journal of Neuroscience Research, 2006, 84, 1311-1322.                                                                                                                                                    | 2.9 | 9         |
| 47 | Lithium Chloride Increases the Production of Amyloid-Î <sup>2</sup> Peptide Independently from Its Inhibition of Glycogen Synthase Kinase 3. Journal of Biological Chemistry, 2005, 280, 33220-33227.                                                                                            | 3.4 | 43        |
| 48 | Adenylosuccinate Lyase Deficiency: Study of Physiopathologic Mechanism(s). Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1227-1229.                                                                                                                                                      | 1.1 | 2         |
| 49 | Intracellular Amyloid-β1–42, but Not Extracellular Soluble Amyloid-β Peptides, Induces Neuronal<br>Apoptosis. Journal of Biological Chemistry, 2002, 277, 15666-15670.                                                                                                                           | 3.4 | 181       |
| 50 | Correlation between β-amyloid peptide production and human APP-induced neuronal death. Peptides, 2002, 23, 1199-1204.                                                                                                                                                                            | 2.4 | 15        |
| 51 | Failure of the interaction between presenilin 1 and the substrate of Î <sup>3</sup> -secretase to produce AÎ <sup>2</sup> in insect<br>cells. Journal of Neurochemistry, 2002, 83, 390-399.                                                                                                      | 3.9 | 13        |
| 52 | Continuous Activation of Pituitary Adenylate Cyclase-Activating Polypeptide Receptors Elicits<br>Antipodal Effects on Cyclic AMP and Inositol Phospholipid Signaling Pathways in CATH.a Cells: Role of<br>Protein Synthesis and Protein Kinases. Journal of Neurochemistry, 2002, 70, 1431-1440. | 3.9 | 12        |
| 53 | The processing and biological function of the human amyloid precursor protein (APP): lessons from different cellular models. Experimental Gerontology, 2000, 35, 843-850.                                                                                                                        | 2.8 | 12        |
| 54 | Experimental gerontology in Belgium: from model organisms to age-related pathologies. Experimental<br>Gerontology, 2000, 35, 901-916.                                                                                                                                                            | 2.8 | 7         |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Depolarization regulates cyclin D1 degradation and neuronal apoptosis: a hypothesis about the role of the ubiquitin/proteasome signalling pathway. European Journal of Neuroscience, 1999, 11, 441-448.                                                      | 2.6 | 63        |
| 56 | A mouse model of familial amyotrophic lateral sclerosis expressing a mutant superoxide dismutase 1<br>shows evidence of disordered transport in the vasopressin hypothalamo-neurohypophysial axis.<br>European Journal of Neuroscience, 1999, 11, 4179-4187. | 2.6 | 21        |
| 57 | Pharmacological, molecular and functional characterization of vasoactive intestinal<br>polypeptide/pituitary adenylate cyclase-activating polypeptide receptors in the rat pineal gland.<br>Neuroscience, 1998, 85, 887-896.                                 | 2.3 | 46        |
| 58 | PACAP Type I Receptor Activation Promotes Cerebellar Neuron Survival Through the cAMP/PKA<br>Signaling Pathway. DNA and Cell Biology, 1997, 16, 323-333.                                                                                                     | 1.9 | 109       |
| 59 | GABAB receptors negatively regulate transcription in cerebellar granular neurons through cyclic<br>AMP responsive element binding protein-dependent mechanisms. Neuroscience, 1996, 70, 417-427.                                                             | 2.3 | 27        |
| 60 | Expression of the c-ets 1 gene in the hypothalamus and pituitary during rat development.<br>Developmental Brain Research, 1996, 97, 107-117.                                                                                                                 | 1.7 | 10        |
| 61 | Glucocorticoids, but not Dopamine, Negatively Regulate the Melanotrophic Activity of the Rabbit<br>Pituitary Intermediate Lobe. Journal of Neuroendocrinology, 1994, 6, 385-390.                                                                             | 2.6 | 6         |
| 62 | APP-deficient neurons show a subtle differential gene expression pattern: impairment in the expression of the activity-dependent transcription factor, NPAS4 Frontiers in Neuroscience, 0, 11, .                                                             | 2.8 | 0         |
| 63 | Cortical cells reveal APP as a regulator of GABAergic neurotransmission. Frontiers in Neuroscience, 0, 11, .                                                                                                                                                 | 2.8 | 0         |
| 64 | Improvement of synaptic plasticity by pharmacological activation of RXR nuclear receptors is PPARα<br>dependent Frontiers in Neuroscience, 0, 12, .                                                                                                          | 2.8 | 0         |
| 65 | Improvement of synaptic plasticity by pharmacological activation of RXR nuclear receptors is PPAR $\hat{I}\pm$ dependent Frontiers in Neuroscience, 0, 12, .                                                                                                 | 2.8 | 0         |
| 66 | Dimeric Transmembrane Orientations of APP/C99 Regulate $\hat{I}^3$ -Secretase Processing Line Impacting Signaling and Oligomerization. SSRN Electronic Journal, O, , .                                                                                       | 0.4 | 1         |
| 67 | Dimeric Transmembrane Orientations of AAPP/C99 Regulate γ-Secretase Processing Line Impacting Signaling and Oligomerization. SSRN Electronic Journal, 0, , .                                                                                                 | 0.4 | 0         |