Wen-Hsiung Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/7701094/wen-hsiung-li-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28,786 82 159 353 h-index g-index citations papers 8.9 364 7.13 32,379 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
353	The codon Adaptation Indexa measure of directional synonymous codon usage bias, and its potential applications. <i>Nucleic Acids Research</i> , 1987 , 15, 1281-95	20.1	2654
352	Unbiased estimation of the rates of synonymous and nonsynonymous substitution. <i>Journal of Molecular Evolution</i> , 1993 , 36, 96-9	3.1	933
351	Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. <i>Plant Cell</i> , 2004 , 16, 122	01346	772
350	Role of duplicate genes in genetic robustness against null mutations. <i>Nature</i> , 2003 , 421, 63-6	50.4	670
349	An evolutionary perspective on synonymous codon usage in unicellular organisms. <i>Journal of Molecular Evolution</i> , 1986 , 24, 28-38	3.1	601
348	Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. <i>American Journal of Human Genetics</i> , 2001 , 68, 444-	5 [1	570
347	Human polymorphism at microRNAs and microRNA target sites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 3300-5	11.5	562
346	Mutation rates differ among regions of the mammalian genome. <i>Nature</i> , 1989 , 337, 283-5	50.4	523
345	Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. <i>Plant Physiology</i> , 2009 , 151, 2120-32	6.6	520
344	Codon usage in regulatory genes in Escherichia coli does not reflect selection for @are@codons. <i>Nucleic Acids Research</i> , 1986 , 14, 7737-49	20.1	445
343	Sequence, structure, receptor-binding domains and internal repeats of human apolipoprotein B-100. <i>Nature</i> , 1986 , 323, 738-42	50.4	413
342	Pseudogenes as a paradigm of neutral evolution. <i>Nature</i> , 1981 , 292, 237-9	50.4	411
341	An evaluation of the molecular clock hypothesis using mammalian DNA sequences. <i>Journal of Molecular Evolution</i> , 1987 , 25, 330-42	3.1	373
340	Transposable elements are found in a large number of human protein-coding genes. <i>Trends in Genetics</i> , 2001 , 17, 619-21	8.5	350
339	Patterns of nucleotide substitution in pseudogenes and functional genes. <i>Journal of Molecular Evolution</i> , 1982 , 18, 360-9	3.1	335
338	Evolutionary analyses of the human genome. <i>Nature</i> , 2001 , 409, 847-9	50.4	331
337	Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. <i>Molecular Biology and Evolution</i> , 2002 , 19, 256-62	8.3	331

336	The molecular clock runs more slowly in man than in apes and monkeys. <i>Nature</i> , 1987 , 326, 93-6	50.4	329
335	Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. <i>Journal of Molecular Evolution</i> , 2004 , 58, 424-41	3.1	327
334	Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. <i>Journal of Molecular Evolution</i> , 1984 , 21, 58-71	3.1	303
333	Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. <i>Journal of Molecular Evolution</i> , 1999 , 48, 597-604	3.1	295
332	Is the guinea-pig a rodent?. <i>Nature</i> , 1991 , 351, 649-52	50.4	286
331	Mammalian housekeeping genes evolve more slowly than tissue-specific genes. <i>Molecular Biology and Evolution</i> , 2004 , 21, 236-9	8.3	274
330	Expression divergence between duplicate genes. <i>Trends in Genetics</i> , 2005 , 21, 602-7	8.5	274
329	Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. <i>Molecular Phylogenetics and Evolution</i> , 1996 , 5, 182-7	4.1	268
328	Rapid divergence in expression between duplicate genes inferred from microarray data. <i>Trends in Genetics</i> , 2002 , 18, 609-13	8.5	254
327	On the rate of DNA sequence evolution in Drosophila. <i>Journal of Molecular Evolution</i> , 1989 , 28, 398-402	3.1	253
326	Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E6496-505	11.5	236
325	High polymorphism at the human melanocortin 1 receptor locus. <i>Genetics</i> , 1999 , 151, 1547-57	4	213
324	Linkage disequilibrium in subdivided populations. <i>Genetics</i> , 1973 , 75, 213-9	4	213
323	Strong male-driven evolution of DNA sequences in humans and apes. <i>Nature</i> , 2002 , 416, 624-6	50.4	194
322	Male-driven evolution of DNA sequences. <i>Nature</i> , 1993 , 362, 745-7	50.4	193
321	Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons. <i>Journal of Molecular Evolution</i> , 1987 , 24, 337-45	3.1	193
320	Structure and evolution of the apolipoprotein multigene family. <i>Journal of Molecular Biology</i> , 1986 , 187, 325-40	6.5	193
319	Male-driven evolution. Current Opinion in Genetics and Development, 2002, 12, 650-6	4.9	180

318	The K(A)/K(S) ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. <i>Genome Research</i> , 2002 , 12, 198-202	9.7	175
317	Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 6283-8	11.5	170
316	Transcription factor families have much higher expansion rates in plants than in animals. <i>Plant Physiology</i> , 2005 , 139, 18-26	6.6	169
315	Divergence in the spatial pattern of gene expression between human duplicate genes. <i>Genome Research</i> , 2003 , 13, 1638-45	9.7	169
314	Rates of synonymous substitution in plant nuclear genes. <i>Journal of Molecular Evolution</i> , 1989 , 29, 208-	23.1	160
313	Duplicate genes increase gene expression diversity within and between species. <i>Nature Genetics</i> , 2004 , 36, 577-9	36.3	150
312	Trichromatic vision in prosimians. <i>Nature</i> , 1999 , 402, 36	50.4	146
311	Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. <i>EMBO Journal</i> , 2011 , 30, 4500-14	13	143
310	MicroRNA regulation of human protein protein interaction network. Rna, 2007, 13, 1402-8	5.8	134
309	Accumulation of mutations in sexual and asexual populations. <i>Genetical Research</i> , 1987 , 49, 135-46	1.1	133
308	Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes. <i>Genetics</i> , 1980 , 95, 237-58	4	132
307	Selective constraints, amino acid composition, and the rate of protein evolution. <i>Molecular Biology and Evolution</i> , 2000 , 17, 656-64	8.3	130
306	Larger genetic differences within africans than between Africans and Eurasians. <i>Genetics</i> , 2002 , 161, 269-74	4	128
305	Coordinated histone modifications are associated with gene expression variation within and between species. <i>Genome Research</i> , 2011 , 21, 590-8	9.7	126
304	Molecular evolution of trichromacy in primates. Vision Research, 1998, 38, 3299-306	2.1	125
303	Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. <i>Nature</i> , 2002 , 418, 323-6	50.4	123
302	The size distribution of insertions and deletions in human and rodent pseudogenes suggests the logarithmic gap penalty for sequence alignment. <i>Journal of Molecular Evolution</i> , 1995 , 40, 464-73	3.1	123
301	Deletions in processed pseudogenes accumulate faster in rodents than in humans. <i>Journal of Molecular Evolution</i> , 1989 , 28, 279-85	3.1	123

(2012-2005)

300	Evidence from opsin genes rejects nocturnality in ancestral primates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 14712-6	11.5	122
299	A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. <i>Genome Research</i> , 2007 , 17, 632-40	9.7	120
298	Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. <i>Molecular Phylogenetics and Evolution</i> , 1995 , 4, 44-63	4.1	120
297	Low nucleotide diversity in chimpanzees and bonobos. <i>Genetics</i> , 2003 , 164, 1511-8	4	118
296	Slow molecular clocks in Old World monkeys, apes, and humans. <i>Molecular Biology and Evolution</i> , 2002 , 19, 2191-8	8.3	115
295	Natural selection on cis and trans regulation in yeasts. <i>Genome Research</i> , 2010 , 20, 826-36	9.7	114
294	Distribution of nucleotide differences between two randomly chosen cistrons in a finite population. <i>Genetics</i> , 1977 , 85, 331-7	4	113
293	Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. <i>Plant Physiology</i> , 2012 , 160, 165-77	6.6	111
292	Different evolutionary patterns between young duplicate genes in the human genome. <i>Genome Biology</i> , 2003 , 4, R56	18.3	108
291	Coalescing into the 21st century: An overview and prospects of coalescent theory. <i>Theoretical Population Biology</i> , 1999 , 56, 1-10	1.2	107
290	Opsin gene and photopigment polymorphism in a prosimian primate. Vision Research, 2002, 42, 11-8	2.1	106
289	Evolutionary diversification of DNA methyltransferases in eukaryotic genomes. <i>Molecular Biology and Evolution</i> , 2005 , 22, 1119-28	8.3	104
288	Molecular evolution meets the genomics revolution. <i>Nature Genetics</i> , 2003 , 33 Suppl, 255-65	36.3	103
287	Patterns of expansion and expression divergence in the plant polygalacturonase gene family. <i>Genome Biology</i> , 2006 , 7, R87	18.3	102
286	Gene essentiality, gene duplicability and protein connectivity in human and mouse. <i>Trends in Genetics</i> , 2007 , 23, 375-8	8.5	95
285	Patterns of segmental duplication in the human genome. <i>Molecular Biology and Evolution</i> , 2005 , 22, 135	5-81.3	94
284	Stable linkage disequilibrium without epistasis in subdivided populations. <i>Theoretical Population Biology</i> , 1974 , 6, 173-83	1.2	92
283	DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. <i>Nature Communications</i> , 2012 , 3, 1004	17.4	91

282	CpG island density and its correlations with genomic features in mammalian genomes. <i>Genome Biology</i> , 2008 , 9, R79	18.3	91
281	Origins and antiquity of X-linked triallelic color vision systems in New World monkeys. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 13749-54	11.5	90
280	Molecular systematics of pikas (genus Ochotona) inferred from mitochondrial DNA sequences. <i>Molecular Phylogenetics and Evolution</i> , 2000 , 16, 85-95	4.1	87
279	Mouse very-low-density-lipoprotein receptor (VLDLR) cDNA cloning, tissue-specific expression and evolutionary relationship with the low-density-lipoprotein receptor. <i>FEBS Journal</i> , 1994 , 224, 975-82		87
278	RNA landscape of evolution for optimal exon and intron discrimination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 5797-802	11.5	86
277	Organismal complexity, protein complexity, and gene duplicability. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 15661-5	11.5	86
276	Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. <i>Nature</i> , 1989 , 339, 145-7	50.4	85
275	Ubiquitin genes as a paradigm of concerted evolution of tandem repeats. <i>Journal of Molecular Evolution</i> , 1987 , 25, 58-64	3.1	85
274	Historical contingency in the evolution of primate color vision. <i>Journal of Human Evolution</i> , 2003 , 44, 25-45	3.1	83
273	Inconsistency of the Maximum-parsimony Method: the Case of Five Taxa With a Molecular Clock. <i>Systematic Biology</i> , 1993 , 42, 113-125	8.4	83
272	Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. <i>Bioinformatics</i> , 2004 , 20, 1914-27	7.2	82
271	Molecular phylogenetic studies of Brassica, rorippa, arabidopsis and allied genera based on the internal transcribed spacer region of 18S-25S rDNA. <i>Molecular Phylogenetics and Evolution</i> , 1999 , 13, 455-62	4.1	82
270	Alternative mRNA splicing and differential promoter utilization determine tissue-specific expression of the apolipoprotein B mRNA-editing protein (Apobec1) gene in mice. Structure and evolution of Apobec1 and related nucleoside/nucleotide deaminases. <i>Journal of Biological</i>	5.4	82
269	Chemistry, 1995, 270, 13042-56 Evolution of DNA Sequences 1985, 1-94		82
268	Lowly expressed human microRNA genes evolve rapidly. <i>Molecular Biology and Evolution</i> , 2009 , 26, 119	583	79
267	What amino acid properties affect protein evolution?. <i>Journal of Molecular Evolution</i> , 1998 , 47, 557-64	3.1	79
266	Parallel Evolution between Aromatase and Androgen Receptor in the Animal Kingdom. <i>Molecular Biology and Evolution</i> , 2009 , 26, 1191-1191	8.3	78
265	Rate of protein evolution versus fitness effect of gene deletion. <i>Molecular Biology and Evolution</i> , 2003 , 20, 772-4	8.3	78

(2014-2005)

264	Statistical methods for identifying yeast cell cycle transcription factors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 13532-7	11.5	78
263	Down-Regulation of Cytokinin Oxidase 2 Expression Increases Tiller Number and Improves Rice Yield. <i>Rice</i> , 2015 , 8, 36	5.8	77
262	Antroquinonol from ethanolic extract of mycelium of Antrodia cinnamomea protects hepatic cells from ethanol-induced oxidative stress through Nrf-2 activation. <i>Journal of Ethnopharmacology</i> , 2011 , 136, 168-77	5	77
261	Drift variances of heterozygosity and genetic distance in transient states. <i>Genetical Research</i> , 1975 , 25, 229-48	1.1	76
260	Maintenance of Genetic Variability under the Joint Effect of Mutation, Selection and Random Drift. <i>Genetics</i> , 1978 , 90, 349-82	4	76
259	Proportion of solvent-exposed amino acids in a protein and rate of protein evolution. <i>Molecular Biology and Evolution</i> , 2007 , 24, 1005-11	8.3	73
258	Molecular evolution of bat color vision genes. Molecular Biology and Evolution, 2004, 21, 295-302	8.3	73
257	Non-random association between electromorphs and inversion chromosomes in finite populations. <i>Genetical Research</i> , 1980 , 35, 65-83	1.1	72
256	Nucleotide diversity in gorillas. <i>Genetics</i> , 2004 , 166, 1375-83	4	71
255	Signatures of domain shuffling in the human genome. <i>Genome Research</i> , 2002 , 12, 1642-50	9.7	71
254	Densities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence. <i>Gene</i> , 2000 , 259, 81-8	3.8	71
253	Gene admixture in the silk road region of China: evidence from mtDNA and melanocortin 1 receptor polymorphism. <i>Genes and Genetic Systems</i> , 2000 , 75, 173-8	1.4	71
252	The chicken frizzle feather is due to an Ekeratin (KRT75) mutation that causes a defective rachis. <i>PLoS Genetics</i> , 2012 , 8, e1002748	6	70
251	Role of positive selection in the retention of duplicate genes in mammalian genomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 2232-6	11.5	70
250	Multidimensional scaling for large genomic data sets. <i>BMC Bioinformatics</i> , 2008 , 9, 179	3.6	69
249	Protein function, connectivity, and duplicability in yeast. <i>Molecular Biology and Evolution</i> , 2006 , 23, 30-9	8.3	69
248	Evolution of the hominoid semenogelin genes, the major proteins of ejaculated semen. <i>Journal of Molecular Evolution</i> , 2003 , 57, 261-70	3.1	69
247	Studying tumorigenesis through network evolution and somatic mutational perturbations in the cancer interactome. <i>Molecular Biology and Evolution</i> , 2014 , 31, 2156-69	8.3	68

246	Evolution of paired domains: isolation and sequencing of jellyfish and hydra Pax genes related to Pax-5 and Pax-6. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 5156-61	11.5	67
245	Higher rates of amino acid substitution in rodents than in humans. <i>Molecular Phylogenetics and Evolution</i> , 1992 , 1, 211-4	4.1	67
244	Human TRIM71 and its nematode homologue are targets of let-7 microRNA and its zebrafish orthologue is essential for development. <i>Molecular Biology and Evolution</i> , 2007 , 24, 2525-34	8.3	66
243	Evolution of the yeast protein interaction network. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 12820-4	11.5	66
242	A new measure of the robustness of biochemical networks. <i>Bioinformatics</i> , 2005 , 21, 2698-705	7.2	65
241	Human SNPs reveal no evidence of frequent positive selection. <i>Molecular Biology and Evolution</i> , 2005 , 22, 2504-7	8.3	65
240	A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA. <i>Molecular Phylogenetics and Evolution</i> , 2002 , 23, 268-75	4.1	64
239	Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. <i>Biotechnology for Biofuels</i> , 2013 , 6, 19	7.8	62
238	Origins, lineage-specific expansions, and multiple losses of tyrosine kinases in eukaryotes. <i>Molecular Biology and Evolution</i> , 2004 , 21, 828-40	8.3	62
237	Gene expression evolves faster in narrowly than in broadly expressed mammalian genes. <i>Molecular Biology and Evolution</i> , 2005 , 22, 2113-8	8.3	61
236	Isolation and expression of a Pax-6 gene in the regenerating and intact Planarian Dugesia(G)tigrina. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 558-63	11.5	61
235	Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts. <i>Molecular Biology and Evolution</i> , 2011 , 28, 131-42	8.3	60
234	Directional mutational pressure affects the amino acid composition and hydrophobicity of proteins in bacteria. <i>Genetica</i> , 1998 , 102/103, 383-391	1.5	60
233	Comparative methods for the analysis of gene-expression evolution: an example using yeast functional genomic data. <i>Molecular Biology and Evolution</i> , 2005 , 22, 40-50	8.3	60
232	So, what about the molecular clock hypothesis?. <i>Current Opinion in Genetics and Development</i> , 1993 , 3, 896-901	4.9	60
231	The molecular clock ticks regularly in muroid rodents and hamsters. <i>Journal of Molecular Evolution</i> , 1992 , 35, 377-84	3.1	60
230	Anatomical and transcriptional dynamics of maize embryonic leaves during seed germination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 3979-84	11.5	59
229	Intragenic spatial patterns of codon usage bias in prokaryotic and eukaryotic genomes. <i>Genetics</i> , 2004 , 168, 2245-60	4	59

(1998-2005)

228	Prediction of splice sites with dependency graphs and their expanded bayesian networks. <i>Bioinformatics</i> , 2005 , 21, 471-82	7.2	59
227	The nonsynonymous/synonymous substitution rate ratio versus the radical/conservative replacement rate ratio in the evolution of mammalian genes. <i>Molecular Biology and Evolution</i> , 2007 , 24, 2235-41	8.3	58
226	A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types. <i>PLoS Computational Biology</i> , 2015 , 11, e1004497	5	57
225	Positional distribution of transcription factor binding sites in Arabidopsis thaliana. <i>Scientific Reports</i> , 2016 , 6, 25164	4.9	56
224	Evolutionary persistence of functional compensation by duplicate genes in Arabidopsis. <i>Genome Biology and Evolution</i> , 2009 , 1, 409-14	3.9	56
223	Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E4743-52	11.5	55
222	Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E2477-86	11.5	53
221	Topographical mapping of Eland Ekeratins on developing chicken skin integuments: Functional interaction and evolutionary perspectives. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E6770-9	11.5	53
220	Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor. <i>Molecular Biology and Evolution</i> , 2001 , 18, 945-53	8.3	53
219	Understanding the origins of AIDS viruses. <i>Nature</i> , 1988 , 336, 315	50.4	53
219	Understanding the origins of AIDS viruses. <i>Nature</i> , 1988 , 336, 315 Apobec-1 and apolipoprotein B mRNA editing. <i>Lipids and Lipid Metabolism</i> , 1997 , 1345, 11-26	50.4	53 52
		50.4 8.5	
218	Apobec-1 and apolipoprotein B mRNA editing. <i>Lipids and Lipid Metabolism</i> , 1997 , 1345, 11-26 External factors accelerate expression divergence between duplicate genes. <i>Trends in Genetics</i> ,		52
218	Apobec-1 and apolipoprotein B mRNA editing. <i>Lipids and Lipid Metabolism</i> , 1997 , 1345, 11-26 External factors accelerate expression divergence between duplicate genes. <i>Trends in Genetics</i> , 2007 , 23, 162-6 A highly efficient Eglucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5.	8.5	52 52
218 217 216	Apobec-1 and apolipoprotein B mRNA editing. <i>Lipids and Lipid Metabolism</i> , 1997 , 1345, 11-26 External factors accelerate expression divergence between duplicate genes. <i>Trends in Genetics</i> , 2007 , 23, 162-6 A highly efficient Eglucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. <i>Biotechnology for Biofuels</i> , 2012 , 5, 24 Inheritance of gene expression level and selective constraints on trans- and cis-regulatory changes	8.5 7.8	52 52 51
218 217 216 215	Apobec-1 and apolipoprotein B mRNA editing. <i>Lipids and Lipid Metabolism</i> , 1997 , 1345, 11-26 External factors accelerate expression divergence between duplicate genes. <i>Trends in Genetics</i> , 2007 , 23, 162-6 A highly efficient Eglucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. <i>Biotechnology for Biofuels</i> , 2012 , 5, 24 Inheritance of gene expression level and selective constraints on trans- and cis-regulatory changes in yeast. <i>Molecular Biology and Evolution</i> , 2013 , 30, 2121-33 Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix	8.5 7.8 8.3	52525151
218 217 216 215 214	Apobec-1 and apolipoprotein B mRNA editing. <i>Lipids and Lipid Metabolism</i> , 1997 , 1345, 11-26 External factors accelerate expression divergence between duplicate genes. <i>Trends in Genetics</i> , 2007 , 23, 162-6 A highly efficient Eglucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. <i>Biotechnology for Biofuels</i> , 2012 , 5, 24 Inheritance of gene expression level and selective constraints on trans- and cis-regulatory changes in yeast. <i>Molecular Biology and Evolution</i> , 2013 , 30, 2121-33 Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. <i>Biotechnology for Biofuels</i> , 2011 , 4, 24 Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis	8.5 7.8 8.3 7.8	 52 52 51 51 51

210	Alternatively and constitutively spliced exons are subject to different evolutionary forces. <i>Molecular Biology and Evolution</i> , 2006 , 23, 675-82	8.3	50
209	The transient distribution of allele frequencies under mutation pressure. <i>Genetical Research</i> , 1976 , 28, 205-14	1.1	50
208	Genome-wide patterns of genetic variation in two domestic chickens. <i>Genome Biology and Evolution</i> , 2013 , 5, 1376-92	3.9	49
207	Mixed culture fermentation from lignocellulosic materials using thermophilic lignocellulose-degrading anaerobes. <i>Process Biochemistry</i> , 2011 , 46, 489-493	4.8	48
206	News and views: the chimpanzee and us. <i>Nature</i> , 2005 , 437, 50-1	50.4	48
205	Estimation of evolutionary distances under stationary and nonstationary models of nucleotide substitution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 5899-905	11.5	48
204	The genetic basis of evolutionary change in gene expression levels. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2010 , 365, 2581-90	5.8	47
203	Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. <i>BMC Bioinformatics</i> , 2006 , 7, 421	3.6	47
202	Overlapping genes in the human and mouse genomes. <i>BMC Genomics</i> , 2008 , 9, 169	4.5	45
201	Protein under-wrapping causes dosage sensitivity and decreases gene duplicability. <i>PLoS Genetics</i> , 2008 , 4, e11	6	45
200	Allelic Variation in the Squirrel Monkey X-Linked Color Vision Gene: Biogeographical and Behavioral Correlates. <i>Journal of Molecular Evolution</i> , 2002 , 54, 734-745	3.1	45
199	Molecular cloning and expression of partial cDNAs and deduced amino acid sequence of a carboxyl-terminal fragment of human apolipoprotein B-100. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1985 , 82, 7265-9	11.5	45
198	Integrating an algal Etarotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. <i>Bioresource Technology</i> , 2015 , 184, 2-8	11	44
197	Genomic organization, transcriptomic analysis, and functional characterization of avian <code>BandEkeratins</code> in diverse feather forms. <i>Genome Biology and Evolution</i> , 2014 , 6, 2258-73	3.9	44
196	NJML: a hybrid algorithm for the neighbor-joining and maximum-likelihood methods. <i>Molecular Biology and Evolution</i> , 2000 , 17, 1401-9	8.3	43
195	The rises and falls of opsin genes in 59 ray-finned fish genomes and their implications for environmental adaptation. <i>Scientific Reports</i> , 2017 , 7, 15568	4.9	42
194	Effects of GC content and mutational pressure on the lengths of exons and coding sequences. Journal of Molecular Evolution, 2003 , 56, 362-70	3.1	42
193	Human DNA sequence variation in a 6.6-kb region containing the melanocortin 1 receptor		

192	Evolution of 5Quntranslated region length and gene expression reprogramming in yeasts. <i>Molecular Biology and Evolution</i> , 2012 , 29, 81-9	8.3	40
191	Features and trend of loss of promoter-associated CpG islands in the human and mouse genomes. <i>Molecular Biology and Evolution</i> , 2007 , 24, 1991-2000	8.3	40
190	Persistence of common alleles in two related populations or species. <i>Genetics</i> , 1977 , 86, 901-14	4	40
189	Identifying gene regulatory modules of heat shock response in yeast. <i>BMC Genomics</i> , 2008 , 9, 439	4.5	39
188	Expression evolution in yeast genes of single-input modules is mainly due to changes in trans-acting factors. <i>Genome Research</i> , 2007 , 17, 1161-9	9.7	39
187	Estimating the intensity of male-driven evolution in rodents by using X-linked and Y-linked Ube 1 genes and pseudogenes. <i>Journal of Molecular Evolution</i> , 1995 , 40, 70-7	3.1	38
186	Molecular evolution of ubiquitin genes. <i>Trends in Ecology and Evolution</i> , 1987 , 2, 328-32	10.9	38
185	The prognostic significance of RUNX2 and miR-10a/10b and their inter-relationship in breast cancer. <i>Journal of Translational Medicine</i> , 2014 , 12, 257	8.5	37
184	Evolutionary conservation of histone modifications in mammals. <i>Molecular Biology and Evolution</i> , 2012 , 29, 1757-67	8.3	37
183	Sex differences in mutation rate in higher primates estimated from AMG intron sequences. <i>Journal of Molecular Evolution</i> , 1997 , 44, 463-5	3.1	37
182	How strong is the mutagenicity of recombination in mammals?. <i>Molecular Biology and Evolution</i> , 2005 , 22, 426-31	8.3	37
181	Structure and evolution of somatostatin genes. <i>Molecular Endocrinology</i> , 1988 , 2, 209-16		37
180	Metabolic engineering a yeast to produce astaxanthin. <i>Bioresource Technology</i> , 2017 , 245, 899-905	11	36
179	The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation. <i>BMC Genomics</i> , 2010 , 11, 581	4.5	36
178	Systematic identification of yeast cell cycle transcription factors using multiple data sources. <i>BMC Bioinformatics</i> , 2008 , 9, 522	3.6	36
177	Distribution of nucleotide differences between two randomly chosen cistrons in a subdivided population: the finite island model. <i>Theoretical Population Biology</i> , 1976 , 10, 303-8	1.2	36
176	PGASO: A synthetic biology tool for engineering a cellulolytic yeast. <i>Biotechnology for Biofuels</i> , 2012 , 5, 53	7.8	35
175	Probability of identical monomorphism in related species. <i>Genetical Research</i> , 1975 , 26, 31-43	1.1	35

174	Expression Divergence of Chemosensory Genes between Drosophila sechellia and Its Sibling Species and Its Implications for Host Shift. <i>Genome Biology and Evolution</i> , 2015 , 7, 2843-58	3.9	34
173	Transcriptomes of mouse olfactory epithelium reveal sexual differences in odorant detection. <i>Genome Biology and Evolution</i> , 2012 , 4, 703-12	3.9	34
172	Comment on "Chromosomal Speciation and Molecular Divergence-Accelerated Evolution in Rearranged Chromosomes". <i>Science</i> , 2003 , 302, 988b-988	33.3	34
171	Large numbers of vertebrates began rapid population decline in the late 19th century. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 14079-14084	11.5	33
170	Human adaptive evolution at Myostatin (GDF8), a regulator of muscle growth. <i>American Journal of Human Genetics</i> , 2006 , 79, 1089-97	11	33
169	Comparison of three methods for estimating rates of synonymous and nonsynonymous nucleotide substitutions. <i>Molecular Biology and Evolution</i> , 2004 , 21, 2290-8	8.3	33
168	DNA polymorphism in a worldwide sample of human X chromosomes. <i>Molecular Biology and Evolution</i> , 2002 , 19, 2131-41	8.3	33
167	Chicken apolipoprotein A-I: cDNA sequence, tissue expression and evolution. <i>Biochemical and Biophysical Research Communications</i> , 1987 , 148, 485-92	3.4	33
166	The genome and occlusion bodies of marine Penaeus monodon nudivirus (PmNV, also known as MBV and PemoNPV) suggest that it should be assigned to a new nudivirus genus that is distinct from the terrestrial nudiviruses. <i>BMC Genomics</i> , 2014 , 15, 628	4.5	32
165	Patterns of gene duplication in Saccharomyces cerevisiae and Caenorhabditis elegans. <i>Journal of Molecular Evolution</i> , 2003 , 56, 28-37	3.1	32
164	Contrasting rates of nucleotide substitution in the X-linked and Y-linked zinc finger genes. <i>Journal of Molecular Evolution</i> , 1994 , 39, 569-78	3.1	32
163	Metabolite profiles for Antrodia cinnamomea fruiting bodies harvested at different culture ages and from different wood substrates. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 7626-35	5.7	31
162	Frequent gene conversion between human red and green opsin genes. <i>Journal of Molecular Evolution</i> , 1998 , 46, 494-6	3.1	31
161	Reorganization of adjacent gene relationships in yeast genomes by whole-genome duplication and gene deletion. <i>Molecular Biology and Evolution</i> , 2006 , 23, 1136-43	8.3	31
160	Roles of trans and cis variation in yeast intraspecies evolution of gene expression. <i>Molecular Biology and Evolution</i> , 2009 , 26, 2533-8	8.3	30
159	Experimental Evolution of Yeast for High-Temperature Tolerance. <i>Molecular Biology and Evolution</i> , 2018 , 35, 1823-1839	8.3	29
158	MicroRNA 3Qend nucleotide modification patterns and arm selection preference in liver tissues. <i>BMC Systems Biology</i> , 2012 , 6 Suppl 2, S14	3.5	29
157	Gene clustering pattern, promoter architecture, and gene expression stability in eukaryotic genomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 3306-11	11.5	29

(2007-2010)

156	Adverse interactions between micro-RNAs and target genes from different species. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 12935-40	11.5	29	
155	Phosphorylated and nonphosphorylated serine and threonine residues evolve at different rates in mammals. <i>Molecular Biology and Evolution</i> , 2010 , 27, 2548-54	8.3	29	
154	SplitPocket: identification of protein functional surfaces and characterization of their spatial patterns. <i>Nucleic Acids Research</i> , 2009 , 37, W384-9	20.1	29	
153	Gene number expansion and contraction in vertebrate genomes with respect to invertebrate genomes. <i>Genome Research</i> , 2008 , 18, 221-32	9.7	29	
152	On the robust circuit design schemes of biochemical networks: steady-state approach. <i>IEEE Transactions on Biomedical Circuits and Systems</i> , 2007 , 1, 91-104	5.1	29	
151	Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. <i>BMC Bioinformatics</i> , 2007 , 8, 188	3.6	29	
150	Codon-usage bias versus gene conversion in the evolution of yeast duplicate genes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 14412-6	11.5	29	
149	An evolutionary approach reveals a high protein-coding capacity of the human genome. <i>Trends in Genetics</i> , 2003 , 19, 306-10	8.5	29	
148	Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification. <i>BMC Bioinformatics</i> , 2005 , 6, 258	3.6	29	
147	A general additive distance with time-reversibility and rate variation among nucleotide sites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1996 , 93, 4671-6	11.5	29	
146	A model for the correlation of mutation rate with GC content and the origin of GC-rich isochores. Journal of Molecular Evolution, 1994 , 38, 468-75	3.1	29	
145	A novel puf-A gene predicted from evolutionary analysis is involved in the development of eyes and primordial germ-cells. <i>PLoS ONE</i> , 2009 , 4, e4980	3.7	28	
144	Potential problems in estimating the male-to-female mutation rate ratio from DNA sequence data. Journal of Molecular Evolution, 1993 , 37, 160-6	3.1	28	
143	Evolution of cytochrome c genes and pseudogenes. <i>Journal of Molecular Evolution</i> , 1986 , 23, 61-75	3.1	28	
142	A general tendency for conservation of protein length across eukaryotic kingdoms. <i>Molecular Biology and Evolution</i> , 2005 , 22, 142-7	8.3	27	
141	Multiple Regulatory Modules Are Required for Scale-to-Feather Conversion. <i>Molecular Biology and Evolution</i> , 2018 , 35, 417-430	8.3	26	
140	Whole genome transcriptome polymorphisms in Arabidopsis thaliana. <i>Genome Biology</i> , 2008 , 9, R165	18.3	26	
139	MYBS: a comprehensive web server for mining transcription factor binding sites in yeast. <i>Nucleic Acids Research</i> , 2007 , 35, W221-6	20.1	26	

138	Bushbaby growth hormone is much more similar to nonprimate growth hormones than to rhesus monkey and human growth hormones. <i>Molecular Biology and Evolution</i> , 2001 , 18, 55-60	8.3	26
137	Statistical tests of molecular phylogenies. <i>Methods in Enzymology</i> , 1990 , 183, 645-59	1.7	26
136	Simulating allele frequencies in a population and the genetic differentiation of populations under mutation pressure. <i>Theoretical Population Biology</i> , 1983 , 23, 19-33	1.2	26
135	Maintenance of genetic variability under the pressure of neutral and deleterious mutations in a finite population. <i>Genetics</i> , 1979 , 92, 647-67	4	26
134	Constructing a yeast to express the largest cellulosome complex on the cell surface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 2385-2394	11.5	25
133	Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion. <i>BMC Biotechnology</i> , 2013 , 13, 71	3.5	25
132	The relationships among microRNA regulation, intrinsically disordered regions, and other indicators of protein evolutionary rate. <i>Molecular Biology and Evolution</i> , 2011 , 28, 2513-20	8.3	25
131	Recombination has little effect on the rate of sequence divergence in pseudoautosomal boundary 1 among humans and great apes. <i>Genome Research</i> , 2004 , 14, 37-43	9.7	25
130	Evolution of protein inhibitors of serine proteinases: positive Darwinian selection or compositional effects?. <i>Journal of Molecular Evolution</i> , 1988 , 28, 131-5	3.1	25
129	Assembler for de novo assembly of large genomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, E3417-24	11.5	24
128	Transcriptomic analyses of regenerating adult feathers in chicken. <i>BMC Genomics</i> , 2015 , 16, 756	4.5	24
127	Statistical Tests of DNA Phylogenies. <i>Systematic Biology</i> , 1995 , 44, 49-63	8.4	24
126	Neutral mutation hypothesis test. <i>Nature</i> , 1991 , 354, 114-6	50.4	24
125	Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous Etarotene and cellulase production. <i>Scientific Reports</i> , 2018 , 8, 10850	4.9	23
124	Establishment of the metabolite profile for an Antrodia cinnamomea health food product and investigation of its chemoprevention activity. <i>Journal of Agricultural and Food Chemistry</i> , 2013 , 61, 8556	5-₹4	23
123	Gene family size conservation is a good indicator of evolutionary rates. <i>Molecular Biology and Evolution</i> , 2010 , 27, 1750-8	8.3	23
122	Nucleotide variation and haplotype diversity in a 10-kb noncoding region in three continental human populations. <i>Genetics</i> , 2006 , 174, 399-409	4	23
121	Comparative transcriptomics method to infer gene coexpression networks and its applications to maize and rice leaf transcriptomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 3091-3099	11.5	22

(2009-1990)

120	vertebrate lactate dehydrogenase genes A (muscle), B (heart) and C (testis). <i>FEBS Journal</i> , 1990 , 189, 215-20		22	
119	Sulfate activation enzymes: phylogeny and association with pyrophosphatase. <i>Journal of Molecular Evolution</i> , 2009 , 68, 1-13	3.1	21	
118	Increasing MicroRNA target prediction confidence by the relative R(2) method. <i>Journal of Theoretical Biology</i> , 2009 , 259, 793-8	2.3	21	
117	Classification of protein functional surfaces using structural characteristics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 1170-5	11.5	21	
116	Method for identifying transcription factor binding sites in yeast. <i>Bioinformatics</i> , 2006 , 22, 1675-81	7.2	21	
115	Are GC-rich isochores vanishing in mammals?. <i>Gene</i> , 2006 , 385, 50-6	3.8	21	
114	Higher gene duplicabilities for metabolic proteins than for nonmetabolic proteins in yeast and E. coli. <i>Journal of Molecular Evolution</i> , 2004 , 59, 806-14	3.1	21	
113	NJML+: an extension of the NJML method to handle protein sequence data and computer software implementation. <i>Molecular Biology and Evolution</i> , 2001 , 18, 1983-92	8.3	21	
112	MicroRNA-like small RNAs prediction in the development of Antrodia cinnamomea. <i>PLoS ONE</i> , 2015 , 10, e0123245	3.7	21	
111	fPOP: footprinting functional pockets of proteins by comparative spatial patterns. <i>Nucleic Acids Research</i> , 2010 , 38, D288-95	20.1	20	
110	Identification of protein functional surfaces by the concept of a split pocket. <i>Proteins: Structure, Function and Bioinformatics</i> , 2009 , 76, 959-76	4.2	20	
109	Radical amino acid change versus positive selection in the evolution of viral envelope proteins. <i>Gene</i> , 2006 , 385, 83-8	3.8	20	
108	LIKELIHOOD ANALYSIS OF MITOCHONDRIAL RESTRICTION-CLEAVAGE PATTERNS FOR THE HUMAN-CHIMPANZEE-GORILLA TRICHOTOMY. <i>Evolution; International Journal of Organic Evolution</i> , 1987 , 41, 1162-1176	3.8	20	
107	Electrophoretic identity of proteins in a finite population and genetic distance between taxa. <i>Genetical Research</i> , 1976 , 28, 119-27	1.1	20	
106	A Mixed Model of Mutation for Electrophoretic Identity of Proteins within and between Populations. <i>Genetics</i> , 1976 , 83, 423-32	4	20	
105	Transcriptional profiling of adult Drosophila antennae by high-throughput sequencing. <i>Zoological Studies</i> , 2013 , 52, 42	0.6	19	
104	Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast. <i>Applied Energy</i> , 2012 , 100, 27-32	10.7	19	
103	Functional compensation by duplicated genes in mouse. <i>Trends in Genetics</i> , 2009 , 25, 441-2	8.5	19	

102	Discovering gapped binding sites of yeast transcription factors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 2527-32	11.5	19
101	Cloning and sequencing of bovine apolipoprotein E complementary DNA and molecular evolution of apolipoproteins E, C-I, and C-II. <i>Journal of Molecular Evolution</i> , 1991 , 32, 469-75	3.1	19
100	Elevated auxin biosynthesis and transport underlie high vein density in C leaves. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E6884-E6891	11.5	18
99	Functional evolution of cardiac microRNAs in heart development and functions. <i>Molecular Biology and Evolution</i> , 2014 , 31, 2722-34	8.3	17
98	Detecting positive selection in the budding yeast genome. <i>Journal of Evolutionary Biology</i> , 2009 , 22, 24	3 <u>0</u> .₹	17
97	Substitution rates in hepatitis delta virus. <i>Journal of Molecular Evolution</i> , 1995 , 41, 721-6	3.1	17
96	Frequency spectra of neutral and deleterious alleles in a finite population. <i>Journal of Mathematical Biology</i> , 1980 , 10, 155-166	2	17
95	Genetic and Molecular Basis of Feather Diversity in Birds. <i>Genome Biology and Evolution</i> , 2018 , 10, 2572	-3586	17
94	Maize and millet transcription factors annotated using comparative genomic and transcriptomic data. <i>BMC Genomics</i> , 2014 , 15, 818	4.5	16
93	Construction of linear invariants in phylogenetic inference. <i>Mathematical Biosciences</i> , 1992 , 109, 201-28	3 3.9	16
92	Evolutionary change of restriction cleavage sites and phylogenetic inference. <i>Genetics</i> , 1986 , 113, 187-2	2143	16
91	Genetically distinct coelacanth population off the northern Tanzanian coast. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 18009-13	11.5	15
90	ETOPE: Evolutionary test of predicted exons. <i>Nucleic Acids Research</i> , 2003 , 31, 3564-7	20.1	15
89	Molecular evolution of recombination hotspots and highly recombining pseudoautosomal regions in hominoids. <i>Molecular Biology and Evolution</i> , 2005 , 22, 1223-30	8.3	15
88	Integrating RNA-seq and ChIP-seq data to characterize long non-coding RNAs in Drosophila melanogaster. <i>BMC Genomics</i> , 2016 , 17, 220	4.5	14
87	Genome-wide prediction of CRISPR/Cas9 targets in Kluyveromyces marxianus and its application to obtain a stable haploid strain. <i>Scientific Reports</i> , 2018 , 8, 7305	4.9	14
86	A thermo- and toxin-tolerant kefir yeast for biorefinery and biofuel production. <i>Applied Energy</i> , 2014 , 132, 465-474	10.7	14
85	Insulin-like growth factor II intron sequences support the hominoid rate-slowdown hypothesis. <i>Molecular Phylogenetics and Evolution</i> , 1993 , 2, 315-21	4.1	14

(2016-2019)

84	Many human RNA viruses show extraordinarily stringent selective constraints on protein evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 19009-1901	8 ^{11.5}	13
83	Uncovering MicroRNA Regulatory Hubs that Modulate Plasma Cell Differentiation. <i>Scientific Reports</i> , 2015 , 5, 17957	4.9	13
82	Dynamic association rules for gene expression data analysis. <i>BMC Genomics</i> , 2015 , 16, 786	4.5	13
81	Parallel evolution between aromatase and androgen receptor in the animal kingdom. <i>Molecular Biology and Evolution</i> , 2009 , 26, 123-9	8.3	13
80	Unexpected conservation of the X-linked color vision gene in nocturnal prosimians: evidence from two bush babies. <i>Journal of Molecular Evolution</i> , 1997 , 45, 610-8	3.1	13
79	Fast evolution of core promoters in primate genomes. <i>Molecular Biology and Evolution</i> , 2008 , 25, 1239-	4\$.3	13
78	Detection of gene duplications and block duplications in eukaryotic genomes. <i>Journal of Structural and Functional Genomics</i> , 2003 , 3, 27-34		13
77	Roles of cis- and trans-changes in the regulatory evolution of genes in the gluconeogenic pathway in yeast. <i>Molecular Biology and Evolution</i> , 2008 , 25, 1863-75	8.3	12
76	Prediction of human miRNAs using tissue-selective motifs in 3QJTRs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 17061-6	11.5	12
75	A systematic approach to detecting transcription factors in response to environmental stresses. <i>BMC Bioinformatics</i> , 2007 , 8, 473	3.6	12
74	Protein complexity, gene duplicability and gene dispensability in the yeast genome. <i>Gene</i> , 2007 , 387, 109-17	3.8	12
73	Molecular evolution of growth hormone and receptor in the guinea-pig, a mammal unresponsive to growth hormone. <i>Gene</i> , 2000 , 246, 357-63	3.8	12
72	Detection of gene duplications and block duplications in eukaryotic genomes. <i>Journal of Structural and Functional Genomics</i> , 2003 , 3, 27-34		12
71	Identifying cis-regulatory changes involved in the evolution of aerobic fermentation in yeasts. <i>Genome Biology and Evolution</i> , 2013 , 5, 1065-78	3.9	11
70	On the Adaptive Design Rules of Biochemical Networks in Evolution. <i>Evolutionary Bioinformatics</i> , 2007 , 3, 117693430700300	1.9	11
69	Identification and evolutionary analysis of long non-coding RNAs in zebra finch. <i>BMC Genomics</i> , 2017 , 18, 117	4.5	10
68	Angiosperm origins. <i>Nature</i> , 1989 , 342, 131-132	50.4	10
67	Regulatory Differences in Natal Down Development between Altricial Zebra Finch and Precocial Chicken. <i>Molecular Biology and Evolution</i> , 2016 , 33, 2030-43	8.3	10

66	Evolutionary approach to predicting the binding site residues of a protein from its primary sequence. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 5313-8	11.5	9
65	The evolution of aerobic fermentation in Schizosaccharomyces pombe was associated with regulatory reprogramming but not nucleosome reorganization. <i>Molecular Biology and Evolution</i> , 2011 , 28, 1407-13	8.3	9
64	Necessary and sufficient conditions for the existence of certain quadratic invariants under a phylogenetic tree. <i>Mathematical Biosciences</i> , 1991 , 105, 229-38	3.9	9
63	Constructing a cellulosic yeast host with an efficient cellulase cocktail. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 751-761	4.9	9
62	Behavioral and brain-transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens. <i>PLoS Genetics</i> , 2020 , 16, e1008831	6	8
61	Regulatory Divergence among Beta-Keratin Genes during Bird Evolution. <i>Molecular Biology and Evolution</i> , 2016 , 33, 2769-2780	8.3	8
60	Insights into the regulation of C4 leaf development from comparative transcriptomic analysis. <i>Current Opinion in Plant Biology</i> , 2016 , 30, 1-10	9.9	8
59	GS-Aligner: a novel tool for aligning genomic sequences using bit-level operations. <i>Molecular Biology and Evolution</i> , 2003 , 20, 1299-309	8.3	8
58	A simulation study on Nei and Li@model for estimating DNA divergence from restriction enzyme maps. <i>Journal of Molecular Evolution</i> , 1981 , 17, 251-5	3.1	8
57	Sequences and evolution of human and squirrel monkey blue opsin genes. <i>Journal of Molecular Evolution</i> , 1997 , 44, 378-82	3.1	7
56	Patterns of internal gene duplication in the course of metazoan evolution. <i>Gene</i> , 2007 , 396, 59-65	3.8	7
55	Developmental constraint on gene duplicability in fruit flies and nematodes. <i>Gene</i> , 2004 , 340, 237-40	3.8	7
54	Different age distribution patterns of human, nematode, and Arabidopsis duplicate genes. <i>Gene</i> , 2004 , 342, 263-8	3.8	7
53	Necessary and sufficient conditions for the existence of linear invariants in phylogenetic inference. <i>Mathematical Biosciences</i> , 1992 , 108, 203-18	3.9	7
52	Identifying Primate ACE2 Variants That Confer Resistance to SARS-CoV-2. <i>Molecular Biology and Evolution</i> , 2021 , 38, 2715-2731	8.3	7
51	Assembling the Setaria italica L. Beauv. genome into nine chromosomes and insights into regions affecting growth and drought tolerance. <i>Scientific Reports</i> , 2016 , 6, 35076	4.9	6
50	A simple method using PyrosequencingTM to identify de novo SNPs in pooled DNA samples. <i>Nucleic Acids Research</i> , 2011 , 39, e28	20.1	6
49	Omics Applications to Biofuel Research 2010 , 265-276		6

48	The influence of adjacent nucleotides on the pattern of nucleotide substitution in mitochondrial introns of angiosperms. <i>Journal of Molecular Evolution</i> , 2002 , 55, 111-5	3.1	6
47	Statistical models for studying DNA sequence evolution. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1995 , 221, 159-167	3.3	6
46	Primary structure of Beijing duck apolipoprotein A-1. <i>The Protein Journal</i> , 1993 , 12, 585-91		6
45	Polymorphism and evolution of the Rh blood groups. <i>Japanese Journal of Human Genetics</i> , 1981 , 26, 26	3-78	6
44	Predicting the probability of H3K4me3 occupation at a base pair from the genome sequence context. <i>Bioinformatics</i> , 2013 , 29, 1199-205	7.2	5
43	Improved variance estimators for one- and two-parameter models of nucleotide substitution. <i>Journal of Theoretical Biology</i> , 2008 , 254, 164-7	2.3	5
42	On the adaptive design rules of biochemical networks in evolution. <i>Evolutionary Bioinformatics</i> , 2007 , 3, 27-39	1.9	5
41	Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 217	4 7 -2517	75 8
40	Revealing the anti-tumor effect of artificial miRNA p-27-5p on human breast carcinoma cell line T-47D. <i>International Journal of Molecular Sciences</i> , 2012 , 13, 6352-69	6.3	4
39	PSC: protein surface classification. <i>Nucleic Acids Research</i> , 2012 , 40, W435-9	20.1	4
39	PSC: protein surface classification. <i>Nucleic Acids Research</i> , 2012 , 40, W435-9 Total number of individuals affected by deleterious mutant genes in a finite population. <i>Annals of Human Genetics</i> , 1975 , 38, 333-40	20.1	4
	Total number of individuals affected by deleterious mutant genes in a finite population. <i>Annals of</i>		
38	Total number of individuals affected by deleterious mutant genes in a finite population. <i>Annals of Human Genetics</i> , 1975 , 38, 333-40 Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis and	2.2	4
38	Total number of individuals affected by deleterious mutant genes in a finite population. <i>Annals of Human Genetics</i> , 1975 , 38, 333-40 Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis and grain yield. <i>Plant Physiology</i> , 2021 , Rice transcription factor GAMYB modulates bHLH142 and is homeostatically regulated by TDR	6.6	4
38 37 36	Total number of individuals affected by deleterious mutant genes in a finite population. <i>Annals of Human Genetics</i> , 1975 , 38, 333-40 Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis and grain yield. <i>Plant Physiology</i> , 2021 , Rice transcription factor GAMYB modulates bHLH142 and is homeostatically regulated by TDR during anther tapetal and pollen development. <i>Journal of Experimental Botany</i> , 2021 , 72, 4888-4903 Chromosomal-level genome assembly of the semi-dwarf rice Taichung Native 1, an initiator of	2.26.67	4 4
38 37 36 35	Total number of individuals affected by deleterious mutant genes in a finite population. <i>Annals of Human Genetics</i> , 1975 , 38, 333-40 Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis and grain yield. <i>Plant Physiology</i> , 2021 , Rice transcription factor GAMYB modulates bHLH142 and is homeostatically regulated by TDR during anther tapetal and pollen development. <i>Journal of Experimental Botany</i> , 2021 , 72, 4888-4903 Chromosomal-level genome assembly of the semi-dwarf rice Taichung Native 1, an initiator of Green Revolution. <i>Genomics</i> , 2021 , 113, 2656-2674 Predicting Transcription Factor Binding Sites and Their Cognate Transcription Factors Using Gene	2.26.674.3	4 4
38 37 36 35 34	Total number of individuals affected by deleterious mutant genes in a finite population. <i>Annals of Human Genetics</i> , 1975 , 38, 333-40 Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis and grain yield. <i>Plant Physiology</i> , 2021 , Rice transcription factor GAMYB modulates bHLH142 and is homeostatically regulated by TDR during anther tapetal and pollen development. <i>Journal of Experimental Botany</i> , 2021 , 72, 4888-4903 Chromosomal-level genome assembly of the semi-dwarf rice Taichung Native 1, an initiator of Green Revolution. <i>Genomics</i> , 2021 , 113, 2656-2674 Predicting Transcription Factor Binding Sites and Their Cognate Transcription Factors Using Gene Expression Data. <i>Methods in Molecular Biology</i> , 2017 , 1629, 271-282 Characterizing an engineered carotenoid-producing yeast as an anti-stress chassis for building cell	2.26.674.31.4	4 4 4 3

30	Feather Evolution from Precocial to Altricial Birds. Zoological Studies, 2019, 58, e24	0.6	3
29	Evolutionary Genetics of Primate Color Vision 2000 , 151-178		3
28	Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus. <i>Genome Biology and Evolution</i> , 2015 , 7, 2245-57	3.9	2
27	Historical profiling of maize duplicate genes sheds light on the evolution of C4 photosynthesis in grasses. <i>Molecular Phylogenetics and Evolution</i> , 2013 , 66, 453-62	4.1	2
26	Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation. <i>Gene Regulation and Systems Biology</i> , 2008 , 2, 53-62	2	2
25	Archaebacterial or eocyte tree?. <i>Nature</i> , 1990 , 343, 419-419	50.4	2
24	Evolutionary change of restriction sites under unequal rates of nucleotide substitution among the three positions of codons. <i>Journal of Molecular Evolution</i> , 1986 , 23, 205-10	3.1	2
23	Effect of changes in population size on the correlation between mutation rate and heterozygosity. <i>Journal of Molecular Evolution</i> , 1979 , 12, 319-29	3.1	2
22	Positive selection causes purifying selection (reply). <i>Nature</i> , 1982 , 295, 630-630	50.4	2
21	Growth of deleterious mutant genes in a large population. <i>Annals of Human Genetics</i> , 1976 , 39, 441-5	2.2	2
20	Gene Trees and Species Trees 2006 ,		1
19	Constructing a human complex type N-linked glycosylation pathway in Kluyveromyces marxianus. <i>PLoS ONE</i> , 2020 , 15, e0233492	3.7	O
18	Computational Reconstruction of Transcriptional Regulatory Modules of the Yeast Cell Cycle331-354		O
17	Detection of gene duplications and block duplications in eukaryotic genomes 2003 , 27-34		O
16	Genomic signatures for the origin, adaptation and diversification of mangroves. <i>National Science Review</i> , 2017 , 4, 735-736	10.8	
15	Mathematical properties of some measures of evolutionary distance. <i>Journal of Theoretical Biology</i> , 2007 , 245, 790-2	2.3	
14	?????????. Nature Digest, 2005 , 2, 19-22	О	
13	Variance of genetic distance and correlation of heterozygosity between populations under the pressure of stepwise mutation. <i>Theoretical Population Biology</i> , 1979 , 15, 171-190	1.2	

LIST OF PUBLICATIONS

12	A note on the arrival probability, first arrival time and age of a mutant gene in a finite population. <i>Annals of Human Genetics</i> , 1976 , 39, 435-9	2.2
11	Structure and Evolution of the Apolipoprotein and Lipase Gene Families. <i>The Argenteuil Symposia</i> , 1992 , 93-107	
10	Contribution of transcription factor binding site motif variants to condition-specific gene expression patterns in budding yeast. <i>PLoS ONE</i> , 2012 , 7, e32274	3.7
9	Comparative Genomics and Evolutionary Genetics of Yeast Carbon Metabolism 2014 , 97-120	
8	ESTIMATION OF THE NUMBERS OF SYNONYMOUS AND NONSYNONYMOUS SUBSTITUTIONS BETWEEN PROTEIN CODING GENES 1986 , 295-314	
7	Identifying mutations in sd1, Pi54 and Pi-ta, and positively selected genes of TN1, the first semidwarf rice in Green Revolution <i>Botanical Studies</i> , 2022 , 63, 9	2.3
6	Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens 2020 , 16, e1008831	
5	Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens 2020 , 16, e1008831	
4	Behavioral and brain-transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens 2020 , 16, e1008831	
3	Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens 2020 , 16, e1008831	
2	Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens 2020 , 16, e1008831	
1	Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens 2020 , 16, e1008831	