Tiecheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7701014/publications.pdf Version: 2024-02-01

TIECHENC WANC

#	Article	IF	CITATIONS
1	Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species. Water Research, 2020, 173, 115564.	11.3	296
2	Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation. Environmental Science & Technology, 2019, 53, 8177-8186.	10.0	295
3	Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma. Water Research, 2016, 89, 28-38.	11.3	139
4	Novel Cu(II)–EDTA Decomplexation by Discharge Plasma Oxidation and Coupled Cu Removal by Alkaline Precipitation: Underneath Mechanisms. Environmental Science & Technology, 2018, 52, 7884-7891.	10.0	137
5	Enhancement of Germination and Seedling Growth of Wheat Seed Using Dielectric Barrier Discharge Plasma with Various Gas Sources. Plasma Chemistry and Plasma Processing, 2017, 37, 1105-1119.	2.4	117
6	Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Scientific Reports, 2017, 7, 16680.	3.3	106
7	Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma. Chemical Engineering Journal, 2018, 346, 65-76.	12.7	98
8	A green strategy for simultaneous Cu(II)-EDTA decomplexation and Cu precipitation from water by bicarbonate-activated hydrogen peroxide/chemical precipitation. Chemical Engineering Journal, 2019, 370, 1298-1309.	12.7	93
9	Decomplexation of EDTA-chelated copper and removal of copper ions by non-thermal plasma oxidation/alkaline precipitation. Chemical Engineering Journal, 2019, 362, 487-496.	12.7	93
10	Charge mediated interaction of polystyrene nanoplastic (PSNP) with minerals in aqueous phase. Water Research, 2020, 178, 115861.	11.3	89
11	Probing the aging processes and mechanisms of microplastic under simulated multiple actions generated by discharge plasma. Journal of Hazardous Materials, 2020, 398, 122956.	12.4	85
12	Highly efficient photocatalytic degradation toward perï¬,uorooctanoic acid by bromine doped BiOI with high exposure of (001) facet. Applied Catalysis B: Environmental, 2020, 268, 118442.	20.2	83
13	Efficient degradation of antibiotics by non-thermal discharge plasma: Highlight the impacts of molecular structures and degradation pathways. Chemical Engineering Journal, 2020, 395, 125091.	12.7	82
14	The photodegradation processes and mechanisms of polyvinyl chloride and polyethylene terephthalate microplastic in aquatic environments: Important role of clay minerals. Water Research, 2022, 208, 117879.	11.3	82
15	Remediation of organophosphorus pesticide polluted soil using persulfate oxidation activated by microwave. Journal of Hazardous Materials, 2021, 401, 123361.	12.4	74
16	High frequency discharge plasma induced plasticizer elimination in water: Removal performance and residual toxicity. Journal of Hazardous Materials, 2020, 383, 121185.	12.4	71
17	Enhanced cytotoxicity of photoaged phenol-formaldehyde resins microplastics: Combined effects of environmentally persistent free radicals, reactive oxygen species, and conjugated carbonyls. Environment International, 2020, 145, 106137.	10.0	71
18	Endogenously activated persulfate by non-thermal plasma for Cu(II)-EDTA decomplexation: Synergistic effect and mechanisms. Chemical Engineering Journal, 2021, 406, 126774.	12.7	67

TIECHENG WANG

#	Article	IF	CITATIONS
19	Evaluation of the potential of p-nitrophenol degradation in dredged sediment by pulsed discharge plasma. Water Research, 2015, 84, 18-24.	11.3	65
20	Evaluation of activated carbon fiber supported nanoscale zero-valent iron for chromium (VI) removal from groundwater in a permeable reactive column. Journal of Environmental Management, 2017, 201, 378-387.	7.8	58
21	Non-thermal plasma oxidation of Cu(II)-EDTA and simultaneous Cu(II) elimination by chemical precipitation. Journal of Environmental Management, 2019, 248, 109237.	7.8	57
22	Review on remediation of organic-contaminated soil by discharge plasma: Plasma types, impact factors, plasma-assisted catalysis, and indexes for remediation. Chemical Engineering Journal, 2022, 436, 135239.	12.7	56
23	Activation of persulfate and removal of ethyl-parathion from soil: Effect of microwave irradiation. Chemosphere, 2020, 253, 126679.	8.2	55
24	Insights into the underlying mechanisms for integrated inactivation of A. spiroides and depression of disinfection byproducts by plasma oxidation. Water Research, 2021, 196, 117027.	11.3	55
25	Glyphosate contaminated soil remediation by atmospheric pressure dielectric barrier discharge plasma and its residual toxicity evaluation. Journal of Hazardous Materials, 2016, 320, 539-546.	12.4	54
26	Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system. Journal of Hazardous Materials, 2016, 302, 65-71.	12.4	54
27	Inorganic anions influenced the photoaging kinetics and mechanism of polystyrene microplastic under the simulated sunlight: Role of reactive radical species. Water Research, 2022, 216, 118294.	11.3	52
28	Pyrene contaminated soil remediation using microwave/magnetite activated persulfate oxidation. Chemosphere, 2022, 286, 131787.	8.2	48
29	Mechanisms for Highly Efficient Mineralization of Bisphenol A by Heterostructured Ag ₂ WO ₄ /Ag ₃ PO ₄ under Simulated Solar Light. ACS Sustainable Chemistry and Engineering, 2019, 7, 4177-4185.	6.7	42
30	Humic acid removal from micro-polluted source water in the presence of inorganic salts in a gas-phase surface discharge plasma system. Separation and Purification Technology, 2017, 187, 334-342.	7.9	40
31	Excess sludge disintegration by discharge plasma oxidation: Efficiency and underlying mechanisms. Science of the Total Environment, 2021, 774, 145127.	8.0	39
32	Highly Efficient Degradation toward Tylosin in the Aqueous Solution by Carbon Spheres/g-C ₃ N ₄ Composites under Simulated Sunlight Irradiation. ACS Sustainable Chemistry and Engineering, 2018, 6, 12776-12786.	6.7	38
33	Dimethyl phthalate elimination from micro-polluted source water by surface discharge plasma: Performance, active species roles and mechanisms. Journal of Hazardous Materials, 2018, 357, 279-288.	12.4	36
34	Insights into Uptake, Translocation, and Transformation Mechanisms of Perfluorophosphinates and Perfluorophosphonates in Wheat (<i>Triticum aestivum</i> L.). Environmental Science & Technology, 2020, 54, 276-285.	10.0	35
35	First report on the sources, vertical distribution and human health risks of legacy and novel per- and polyfluoroalkyl substances in groundwater from the Loess Plateau, China. Journal of Hazardous Materials, 2021, 404, 124134.	12.4	34
36	Enhanced degradation of azo dye in wastewater by pulsed discharge plasma coupled with MWCNTs-TiO2/γ-Al2O3 composite photocatalyst. Journal of Environmental Management, 2016, 172, 186-192.	7.8	33

TIECHENG WANG

#	Article	IF	CITATIONS
37	Highly effective photocatalytic decomplexation of Cu-EDTA by MIL-53(Fe): Highlight the important roles of Fe. Chemical Engineering Journal, 2021, 424, 130515.	12.7	33
38	Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma. Water Research, 2021, 204, 117630.	11.3	31
39	High-efficient decomplexation of Cu-EDTA and Cu removal by high-frequency non-thermal plasma oxidation/alkaline precipitation. Separation and Purification Technology, 2021, 257, 117885.	7.9	30
40	Effective removal of the heavy metal-organic complex Cu-EDTA from water by catalytic persulfate oxidation: Performance and mechanisms. Journal of Cleaner Production, 2021, 314, 128119.	9.3	28
41	High-efficient removal of tetrabromobisphenol A in aqueous by dielectric barrier discharge: Performance and degradation pathways. Separation and Purification Technology, 2020, 240, 116615.	7.9	26
42	Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Separation and Purification Technology, 2020, 232, 115974.	7.9	25
43	Greatly enhanced oxidative activity of Î^MnO2 to degrade organic pollutants driven by dominantly exposed {â^'111} facets. Journal of Hazardous Materials, 2021, 413, 125285.	12.4	25
44	The First Observation of the Formation of Persistent Aminoxyl Radicals and Reactive Nitrogen Species on Photoirradiated Nitrogen-Containing Microplastics. Environmental Science & Technology, 2022, 56, 779-789.	10.0	24
45	Plasma induced efficient removal of antibiotic-resistant Escherichia coli and antibiotic resistance genes, and inhibition of gene transfer by conjugation. Journal of Hazardous Materials, 2021, 419, 126465.	12.4	23
46	Photodegradation of microplastics mediated by different types of soil: The effect of soil components. Science of the Total Environment, 2022, 802, 149840.	8.0	23
47	Self-catalytic Fenton-like reactions stimulated synergistic Cu-EDTA decomplexation and Cu recovery by glow plasma electrolysis. Chemical Engineering Journal, 2022, 433, 134601.	12.7	23
48	Surface plasma induced elimination of antibiotic-resistant Escherichia coli and resistance genes: Antibiotic resistance, horizontal gene transfer, and mechanisms. Separation and Purification Technology, 2021, 275, 119185.	7.9	22
49	Performance Evaluation of Hybrid Gas–Liquid Pulse Discharge Plasma-Induced Degradation of Polyvinyl Alcohol-Containing Wastewater. Plasma Chemistry and Plasma Processing, 2014, 34, 1115-1127.	2.4	20
50	Environmental free radicals efficiently inhibit the conjugative transfer of antibiotic resistance by altering cellular metabolism and plasmid transfer. Water Research, 2022, 209, 117946.	11.3	20
51	Insights into the highly efficient detoxification of the biotoxin patulin in water by discharge plasma oxidation. Chemical Engineering Journal, 2021, 411, 128432.	12.7	19
52	Decomplexation of Cu(II)-natural organic matter complex by non-thermal plasma oxidation: Process and mechanisms. Journal of Hazardous Materials, 2020, 389, 121828.	12.4	18
53	Bioavailability and Bioaccumulation of 6:2 Fluorotelomer Sulfonate, 6:2 Chlorinated Polyfluoroalkyl Ether Sulfonates, and Perfluorophosphinates in a Soil–Plant System. Journal of Agricultural and Food Chemistry, 2020, 68, 4325-4334.	5.2	18
54	Theoretical and experimental insights into electron-induced efficient defluorination of perfluorooctanoic acid and perfluorooctane sulfonate by mesoporous plasma. Chemical Engineering Journal, 2022, 430, 132922.	12.7	17

TIECHENG WANG

#	Article	IF	CITATIONS
55	Three-dimensional spatial distribution of legacy and novel poly/perfluoroalkyl substances in the Tibetan Plateau soil: Implications for transport and sources. Environment International, 2022, 158, 107007.	10.0	17
56	Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic aromatic hydrocarbons. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	6.0	16
57	Simultaneous Cu-EDTA oxidation decomplexation and Cr(VI) reduction in water by persulfate/formate system: Reaction process and mechanisms. Chemical Engineering Journal, 2022, 427, 131584.	12.7	16
58	Theoretical and experimental insights into the mechanisms of C6/C6 PFPiA degradation by dielectric barrier discharge plasma. Journal of Hazardous Materials, 2022, 424, 127522.	12.4	16
59	Underlying mechanisms of promoted formation of haloacetic acids disinfection byproducts after indometacin degradation by non-thermal discharge plasma. Water Research, 2022, 220, 118701.	11.3	16
60	FT-ICR/MS deciphers formation of unknown macromolecular disinfection byproducts from algal organic matters after plasma oxidation. Water Research, 2022, 218, 118492.	11.3	15
61	High-efficient decomplexation of Cu-HA by discharge plasma: Process and mechanisms. Separation and Purification Technology, 2020, 248, 117137.	7.9	12
62	Insights into the impacts of dissolved organic matter of different origins on bioaccumulation and translocation of per- and polyfluoroalkyl substances (PFASs) in wheat. Environmental Pollution, 2022, 293, 118604.	7.5	12
63	Oxygen Limitation Accelerates Regeneration of Active Sites on a MnO ₂ Surface: Promoting Transformation of Organic Matter and Carbon Preservation. Environmental Science & Technology, 2022, 56, 9806-9815.	10.0	11
64	Photocatalytic Degradation of Acid Orange II Using Activated Carbon Fiber-Supported Cobalt Phthalocyanine Coupled with Hydrogen Peroxide. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	9
65	Low-molecular-weight organic acids impede the degradation of naphthol in iron oxides/persulfate systems: Implications for research experiments in pure conditions. Chemosphere, 2019, 225, 1-8.	8.2	8
66	Potential impact of active substances in non-thermal discharge plasma process on microbial community structures and enzymatic activities in uncontaminated soil. Journal of Hazardous Materials, 2020, 393, 122489.	12.4	8
67	Simultaneous production of low molecular weight chitosan and reducing sugar via high molecular chitosan depolymerization by surface discharge plasma. Journal of Cleaner Production, 2021, 316, 128295.	9.3	7
68	Simultaneous removal of antibiotic-resistant bacteria and its resistance genes in water by plasma oxidation: Highlights the effects of inorganic ions. Separation and Purification Technology, 2021, 278, 119672.	7.9	6
69	Enhanced removal of acid orange II from aqueous solution by V and N co-doping TiO2-MWCNTs/ <i>γ</i> -Al2O3 composite photocatalyst induced by pulsed discharge plasma. Water Science and Technology, 2021, 83, 257-270.	2.5	6
70	Chlorinated disinfection by-product formation during DOM removal by discharge plasma: Insights into DOC structure alterations. Separation and Purification Technology, 2022, 294, 121183.	7.9	6
71	Insights into DNA Structures during Antibiotic-Resistance Gene Elimination by Mesoporous Plasma. ACS ES&T Water, 2022, 2, 128-136.	4.6	5