Aria Baniahmad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7700980/publications.pdf

Version: 2024-02-01

304368 329751 1,531 53 22 37 h-index citations g-index papers 54 54 54 1908 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The androgen receptorâ€"IncRNASAT1-AKT-p15 axis mediates androgen-induced cellular senescence in prostate cancer cells. Oncogene, 2022, 41, 943-959.	2.6	16
2	PITX1 Is a Regulator of TERT Expression in Prostate Cancer with Prognostic Power. Cancers, 2022, 14, 1267.	1.7	7
3	The natural compound atraric acid suppresses androgen-regulated neo-angiogenesis of castration-resistant prostate cancer through angiopoietin 2. Oncogene, 2022, 41, 3263-3277.	2.6	8
4	Inhibitor of Growth Factors Regulate Cellular Senescence. Cancers, 2022, 14, 3107.	1.7	1
5	Androgen Receptor-Dependent Mechanisms Mediating Drug Resistance in Prostate Cancer. Cancers, 2021, 13, 1534.	1.7	41
6	A Novel Splice Variant of the Inhibitor of Growth 3 Lacks the Plant Homeodomain and Regulates Epithelial–Mesenchymal Transition in Prostate Cancer Cells. Biomolecules, 2021, 11, 1152.	1.8	4
7	Antithetic hTERT Regulation by Androgens in Prostate Cancer Cells: hTERT Inhibition Is Mediated by the ING1 and ING2 Tumor Suppressors. Cancers, 2021, 13, 4025.	1.7	8
8	ING Tumour Suppressors and ING Splice Variants as Coregulators of the Androgen Receptor Signalling in Prostate Cancer. Cells, 2021, 10, 2599.	1.8	6
9	Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 11088.	1.8	65
10	Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells, 2021, 10, 3198.	1.8	8
11	Tumor spheroids and organoids as preclinical model systems. Medizinische Genetik, 2021, 33, 229-234.	0.1	0
12	Sex Differences in Diabetes- and TGF- \hat{l}^21 -Induced Renal Damage. Cells, 2020, 9, 2236.	1.8	24
13	Mechanisms of Androgen Receptor Agonist- and Antagonist-Mediated Cellular Senescence in Prostate Cancer. Cancers, 2020, 12, 1833.	1.7	35
14	Interleukin-23 Represses the Level of Cell Senescence Induced by the Androgen Receptor Antagonists Enzalutamide and Darolutamide in Castration-Resistant Prostate Cancer Cells. Hormones and Cancer, 2020, 11, 182-190.	4.9	14
15	Senolytic compounds control a distinct fate of androgen receptor agonist- and antagonist-induced cellular senescent LNCaP prostate cancer cells. Cell and Bioscience, 2020, 10, 59.	2.1	31
16	Thyroid hormone induces cellular senescence in prostate cancer cells through induction of DEC1. Journal of Steroid Biochemistry and Molecular Biology, 2020, 201, 105689.	1.2	10
17	Protein translation controlled by the androgen receptor in prostate cancer: a novel therapeutic option?. Translational Cancer Research, 2020, 9, 2171-2174.	0.4	1
18	Interference with the androgen receptor protein stability in therapyâ€resistant prostate cancer. International Journal of Cancer, 2019, 144, 1775-1779.	2.3	22

#	Article	IF	CITATIONS
19	Halogen-substituted anthranilic acid derivatives provide a novel chemical platform for androgen receptor antagonists. Journal of Steroid Biochemistry and Molecular Biology, 2019, 188, 59-70.	1.2	14
20	Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nature Communications, 2017, 8, 374.	5.8	180
21	Androgens induce a distinct response of epithelial-mesenchymal transition factors in human prostate cancer cells. Molecular and Cellular Biochemistry, 2016, 421, 139-147.	1.4	22
22	A novel crosstalk between the tumor suppressors ING1 and ING2 regulates androgen receptor signaling. Journal of Molecular Medicine, 2016, 94, 1167-1179.	1.7	18
23	The tumor suppressor ING1b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells. Journal of Molecular Cell Biology, 2016, 8, 207-220.	1.5	27
24	Inhibition of the Androgen Receptor by Antiandrogens in Spinobulbar Muscle Atrophy. Journal of Molecular Neuroscience, 2016, 58, 343-347.	1.1	5
25	The activation of OR51E1 causes growth suppression of human prostate cancer cells. Oncotarget, 2016, 7, 48231-48249.	0.8	53
26	Cellular Senescence by the Epigenetic Regulators Inhibitor of Growth. Journal of Aging Science, 2016, 04, .	0.5	4
27	Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget, 2015, 6, 35542-35555.	0.8	60
28	Novel Nor-Homo- and Spiro-Oxetan- Steroids Target the Human Androgen Receptor and Act as Antiandrogens. Current Medicinal Chemistry, 2015, 22, 1156-1167.	1.2	5
29	A Natural Androgen Receptor Antagonist Induces Cellular Senescence in Prostate Cancer Cells. Molecular Endocrinology, 2014, 28, 1831-1840.	3.7	36
30	Supraphysiological androgen levels induce cellular senescence in human prostate cancer cells through the Src-Akt pathway. Molecular Cancer, 2014, 13, 214.	7.9	62
31	Special issue on hormones and ageing. Hormone Molecular Biology and Clinical Investigation, 2013, 16, 1-2.	0.3	3
32	Why do we need to age?. Hormone Molecular Biology and Clinical Investigation, 2013, 16, 3-5.	0.3	1
33	Computational and Functional Analysis of the Androgen Receptor Antagonist Atraric Acid and Its Derivatives. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 801-810.	0.9	7
34	Chaperones for proper androgen action $\hat{a}\in$ a plethora of assistance to androgen receptor function. Hormone Molecular Biology and Clinical Investigation, 2012, 11, 321-8.	0.3	4
35	Androgen receptor-mediated gene repression. Molecular and Cellular Endocrinology, 2012, 352, 46-56.	1.6	58
36	The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth. Molecular and Cellular Endocrinology, 2011, 332, 1-8.	1.6	51

#	Article	IF	Citations
37	Antiandrogenic activity of anthranilic acid ester derivatives as novel lead structures to inhibit prostate cancer cell proliferation. Chemical Biology and Drug Design, 2011, 77, 450-459.	1.5	19
38	The ING tumor suppressors in cellular senescence and chromatin. Cell and Bioscience, 2011, 1, 25.	2.1	22
39	A Designed Cell-Permeable Aptamer-Based Corepressor Peptide Is Highly Specific for the Androgen Receptor and Inhibits Prostate Cancer Cell Growth in a Vector-Free Mode. Endocrinology, 2011, 152, 2174-2183.	1.4	9
40	Ligand-dependent Corepressor Acts as a Novel Androgen Receptor Corepressor, Inhibits Prostate Cancer Growth, and Is Functionally Inactivated by the Src Protein Kinase. Journal of Biological Chemistry, 2011, 286, 37108-37117.	1.6	38
41	Sodium butyrate induces cellular senescence in neuroblastoma and prostate cancer cells. Hormone Molecular Biology and Clinical Investigation, 2011, 7, 265-72.	0.3	15
42	20-Aminosteroids as a novel class of selective and complete androgen receptor antagonists and inhibitors of prostate cancer cell growth. Bioorganic and Medicinal Chemistry, 2010, 18, 6960-6969.	1.4	22
43	The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth. Journal of Cellular and Molecular Medicine, 2009, 13, 2210-2223.	1.6	45
44	ING2 recruits histone methyltransferase activity with methylation site specificity distinct from histone H3 lysines 4 and 9. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1673-1680.	1.9	17
45	Wildâ€type but not mutant androgen receptor inhibits expression of the hTERT telomerase subunit: a novel role of AR mutation for prostate cancer development. FASEB Journal, 2008, 22, 1258-1267.	0.2	54
46	The Tumor Suppressors p33ING1 and p33ING2 Interact with Alienin Vivoand Enhance Alien-Mediated Gene Silencing. Journal of Proteome Research, 2007, 6, 4182-4188.	1.8	9
47	Activity-Guided Isolation of an Antiandrogenic Compound ofPygeum africanum. Planta Medica, 2006, 72, 547-551.	0.7	31
48	Extracts from Pygeum africanum and Other Ethnobotanical Species with Antiandrogenic Activity. Planta Medica, 2006, 72, 807-813.	0.7	42
49	Growth Inhibition by the Tumor Suppressor p33ING1 in Immortalized and Primary Cells: Involvement of Two Silencing Domains and Effect of Ras. Molecular and Cellular Biology, 2005, 25, 422-431.	1.1	48
50	Nuclear hormone receptor co-repressors. Journal of Steroid Biochemistry and Molecular Biology, 2005, 93, 89-97.	1.2	33
51	The highly conserved region of the co-repressor Sin3A functionally interacts with the co-repressor Alien. Nucleic Acids Research, 2004, 32, 2995-3004.	6.5	30
52	Agonist–antagonist induced coactivator and corepressor interplay on the human androgen receptor. Molecular and Cellular Endocrinology, 2003, 213, 79-85.	1.6	46
53	The Amino Terminus of the Human AR Is Target for Corepressor Action and Antihormone Agonism. Molecular Endocrinology, 2002, 16, 661-673.	3.7	139