Rute A S Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7700906/publications.pdf Version: 2024-02-01

		20797	31818
357	14,125	60	101
papers	citations	h-index	g-index
371	371	371	11222
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lanthanideâ€Containing Lightâ€Emitting Organic–Inorganic Hybrids: A Bet on the Future. Advanced Materials, 2009, 21, 509-534.	11.1	850
2	Progress on lanthanide-based organic–inorganic hybrid phosphors. Chemical Society Reviews, 2011, 40, 536-549.	18.7	527
3	Ratiometric Nanothermometer Based on an Emissive Ln ³⁺ -Organic Framework. ACS Nano, 2013, 7, 7213-7218.	7.3	335
4	Full-Color Phosphors from Europium(III)-Based Organosilicates. Advanced Materials, 2000, 12, 594-598.	11.1	313
5	White-Light Emission of Amine-Functionalized Organic/Inorganic Hybrids:  Emitting Centers and Recombination Mechanisms. Journal of Physical Chemistry B, 2004, 108, 14924-14932.	1.2	234
6	Novel Lanthanide Luminescent Materials Based on Complexes of 3-Hydroxypicolinic Acid and Silica Nanoparticles. Chemistry of Materials, 2003, 15, 100-108.	3.2	227
7	Recent advances in luminescent lanthanide based Single-Molecule Magnets. Coordination Chemistry Reviews, 2018, 363, 57-70.	9.5	226
8	A Highâ€Temperature Molecular Ferroelectric Zn/Dy Complex Exhibiting Singleâ€Ionâ€Magnet Behavior and Lanthanide Luminescence. Angewandte Chemie - International Edition, 2015, 54, 2236-2240.	7.2	220
9	A theoretical interpretation of the abnormal 5D0→7F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate. Journal of Luminescence, 2006, 121, 561-567.	1.5	197
10	Upconverting Nanoparticles Working As Primary Thermometers In Different Media. Journal of Physical Chemistry C, 2017, 121, 13962-13968.	1.5	181
11	Energy-Transfer Mechanisms and Emission Quantum Yields In Eu3+-Based Siloxane-Poly(oxyethylene) Nanohybrids. Chemistry of Materials, 2001, 13, 2991-2998.	3.2	178
12	Highly Luminescent Tris(β-diketonate)europium(III) Complexes Immobilized in a Functionalized Mesoporous Silica. Chemistry of Materials, 2005, 17, 5077-5084.	3.2	172
13	A bifunctional luminescent single-ion magnet: towards correlation between luminescence studies and magnetic slow relaxation processes. Chemical Communications, 2012, 48, 9974.	2.2	171
14	Highly Photostable Luminescent Poly(ε-caprolactone)siloxane Biohybrids Doped with Europium Complexes. Chemistry of Materials, 2007, 19, 3892-3901.	3.2	164
15	Interconvertable Modular Framework and Layered Lanthanide(III)-Etidronic Acid Coordination Polymers. Journal of the American Chemical Society, 2008, 130, 150-167.	6.6	153
16	Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials. Journal of Materials Chemistry A, 2014, 2, 5580-5596.	5.2	150
17	Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs. Nature Communications, 2014, 5, 5702.	5.8	146
18	Optically Functional Di-Urethanesil Nanohybrids Containing Eu3+ Ions. Chemistry of Materials, 2004, 16, 2530-2543.	3.2	140

#	Article	IF	CITATIONS
19	Highly-sensitive Eu ³⁺ ratiometric thermometers based on excited state absorption with predictable calibration. Nanoscale, 2016, 8, 5327-5333.	2.8	136
20	Luminescent and Magnetic Cyano-Bridged Coordination Polymers Containing 4dâ^'4f Ions: Toward Multifunctional Materials. Inorganic Chemistry, 2009, 48, 5983-5995.	1.9	134
21	A Luminescent and Magnetic Cyano-Bridged Tb ³⁺ â^'Mo ⁵⁺ Coordination Polymer: toward Multifunctional Materials. Inorganic Chemistry, 2008, 47, 775-777.	1.9	128
22	Spectroscopic Study of a UV-Photostable Organic-Inorganic Hybrids Incorporating an Eu3+ β-Diketonate Complex. ChemPhysChem, 2006, 7, 735-746.	1.0	127
23	Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chemistry, 2011, 13, 3173.	4.6	124
24	Functional nanostructured chitosan–siloxane hybrids. Journal of Materials Chemistry, 2005, 15, 3952.	6.7	123
25	Room temperature magnetoelectric coupling in a molecular ferroelectric ytterbium(III) complex. Science, 2020, 367, 671-676.	6.0	114
26	Photoluminescent 3D Lanthanideâ^'Organic Frameworks with 2,5-Pyridinedicarboxylic and 1,4-Phenylenediacetic Acids. Crystal Growth and Design, 2008, 8, 2505-2516.	1.4	112
27	Optical Fiber Relative Humidity Sensor Based on a FBG with a Di-Ureasil Coating. Sensors, 2012, 12, 8847-8860.	2.1	105
28	Breakdown into nanoscale of graphene oxide: Confined hot spot atomic reduction and fragmentation. Scientific Reports, 2014, 4, 6735.	1.6	105
29	Nanoscopic Photoluminescence Memory as a Fingerprint of Complexity in Self-Assembled Alkyl/Siloxane Hybrids. Advanced Materials, 2007, 19, 341-348.	11.1	101
30	Photoluminescence and Quantum Yields of Urea and Urethane Cross-Linked Nanohybrids Derived from Carboxylic Acid Solvolysis. Chemistry of Materials, 2004, 16, 1507-1516.	3.2	100
31	Photo–Click Chemistry to Design Highly Efficient Lanthanide β-Diketonate Complexes Stable under UV Irradiation. Chemistry of Materials, 2013, 25, 586-598.	3.2	96
32	Thermal Properties of Lipid Bilayers Determined Using Upconversion Nanothermometry. Advanced Functional Materials, 2019, 29, 1905474.	7.8	96
33	Engineering highly efficient Eu(iii)-based tri-ureasil hybrids toward luminescent solar concentrators. Journal of Materials Chemistry A, 2013, 1, 7339.	5.2	95
34	Photoluminescent Lanthanide-Organic Bilayer Networks with 2,3-Pyrazinedicarboxylate and Oxalate. Inorganic Chemistry, 2010, 49, 3428-3440.	1.9	94
35	Photoluminescence and lattice location of Eu and Pr implanted GaN samples. Physica B: Condensed Matter, 2001, 308-310, 22-25.	1.3	91
36	Immobilization of Lanthanide Ions in a Pillared Layered Double Hydroxide. Chemistry of Materials, 2005, 17, 5803-5809.	3.2	89

#	Article	IF	CITATIONS
37	Citric Acid-Assisted Hydrothermal Synthesis of Luminescent TbPO4:Eu Nanocrystals: Controlled Morphology and Tunable Emission. Journal of Physical Chemistry C, 2008, 112, 18815-18820.	1.5	87
38	A cryogenic luminescent ratiometric thermometer based on a lanthanide phosphonate dimer. Journal of Materials Chemistry C, 2015, 3, 8480-8484.	2.7	87
39	Structure–photoluminescence relationship in Eu(iii) β-diketonate-based organic–inorganic hybrids. Influence of the synthesis method: carboxylic acid solvolysis versus conventional hydrolysis. Journal of Materials Chemistry, 2005, 15, 3117.	6.7	86
40	Structural and Photoluminescence Studies of a Europium(III) Tetrakis(β-diketonate) Complex with Tetrabutylammonium, Imidazolium, Pyridinium and Silica-Supported Imidazolium Counterions. Inorganic Chemistry, 2009, 48, 4882-4895.	1.9	86
41	Energy Transfer Mechanisms in Organicâ^'Inorganic Hybrids Incorporating Europium(III):  A Quantitative Assessment by Light Emission Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 17627-17634.	1.5	84
42	A layered erbium phosphonate in pseudo-D5h symmetry exhibiting field-tunable magnetic relaxation and optical correlation. Chemical Communications, 2014, 50, 7621.	2.2	83
43	Spectral converters for photovoltaics – What's ahead. Materials Today, 2020, 33, 105-121.	8.3	83
44	Modulating the Photoluminescence of Bridged Silsesquioxanes Incorporating Eu ³⁺ -Complexed <i>n</i> , <i>n</i> ′-Diureido-2,2′-bipyridine Isomers: Application for Luminescent Solar Concentrators. Chemistry of Materials, 2011, 23, 4773-4782.	3.2	82
45	Investigation of europium(III) and gadolinium(III) complexes with naphthoyltrifluoroacetone and bidentate heterocyclic amines. Journal of Luminescence, 2005, 113, 50-63.	1.5	78
46	Eu ³⁺ -Based Bridged Silsesquioxanes for Transparent Luminescent Solar Concentrators. ACS Applied Materials & Interfaces, 2015, 7, 8770-8778.	4.0	78
47	Synthesis, characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS → lanthanide energy transfer mechanisms. Journal of Materials Chemistry, 2011, 21, 1162-1170.	6.7	77
48	Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks. Optical Materials, 2010, 32, 1397-1409.	1.7	76
49	Lanthanide-Based Lamellar Nanohybrids:Â Synthesis, Structural Characterization, and Optical Properties. Chemistry of Materials, 2006, 18, 4493-4499.	3.2	74
50	White OLED based on a temperature sensitive Eu3+/Tb3+ β-diketonate complex. Organic Electronics, 2014, 15, 798-808.	1.4	74
51	High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics. Solar Energy Materials and Solar Cells, 2015, 138, 51-57.	3.0	74
52	Luminescence Thermometry on the Route of the Mobileâ€Based Internet of Things (IoT): How Smart QR Codes Make It Real. Advanced Science, 2019, 6, 1900950.	5.6	74
53	Recovery of phycobiliproteins from the red macroalga Gracilaria sp. using ionic liquid aqueous solutions. Green Chemistry, 2016, 18, 4287-4296.	4.6	71
54	Energy Transfer and Emission Quantum Yields of Organicâ^'Inorganic Hybrids Lacking Metal Activator Centers. Journal of Physical Chemistry C, 2007, 111, 3275-3284.	1.5	70

#	Article	IF	CITATIONS
55	Synthesis, Characterization, and Luminescence of β-Cyclodextrin Inclusion Compounds Containing Europium(III) and Gadolinium(III) Tris(β-diketonates). Journal of Physical Chemistry B, 2002, 106, 11430-11437.	1.2	65
56	High-Performance Near-Infrared Luminescent Solar Concentrators. ACS Applied Materials & Interfaces, 2017, 9, 12540-12546.	4.0	64
57	Series of Metal Organic Frameworks Assembled from Ln(III), Na(I), and Chiral Flexible-Achiral Rigid Dicarboxylates Exhibiting Tunable UV–vis–IR Light Emission. Inorganic Chemistry, 2012, 51, 1703-1716.	1.9	63
58	Effects of Phonon Confinement on Anomalous Thermalization, Energy Transfer, and Upconversion in Ln ³⁺ â€Doped Gd ₂ O ₃ Nanotubes. Advanced Functional Materials, 2010, 20, 624-634.	7.8	62
59	Photoluminescence of Eu(iii)-doped lamellar bridged silsesquioxanes self-templated through a hydrogen bonding array. Journal of Materials Chemistry, 2008, 18, 4172.	6.7	61
60	Calix[4]azacrowns as Novel Molecular Scaffolds for the Generation of Visible and Near-Infrared Lanthanide Luminescence. Inorganic Chemistry, 2006, 45, 2652-2660.	1.9	60
61	Novel Near-Infrared Luminescent Hybrid Materials Covalently Linking with Lanthanide [Nd(III), Er(III), Yb(III), and Sm(III)] Complexes via a Primary β-Diketone Ligand: Synthesis and Photophysical Studies. Journal of Physical Chemistry C, 2009, 113, 12538-12545.	1.5	60
62	Ligand-Assisted Rational Design and Supramolecular Tectonics toward Highly Luminescent Eu ³⁺ -Containing Organicâ^'Inorganic Hybrids. Chemistry of Materials, 2009, 21, 5099-5111.	3.2	58
63	Luminescent Polyoxotungstoeuropate Anion-Pillared Layered Double Hydroxides. European Journal of Inorganic Chemistry, 2006, 2006, 726-734.	1.0	56
64	Lanthanopolyoxotungstates in silica nanoparticles: multi-wavelength photoluminescent core/shell materials. Journal of Materials Chemistry, 2010, 20, 3313.	6.7	56
65	Lanthanide phosphonates with pseudo-D _{5h} local symmetry exhibiting magnetic and luminescence bifunctional properties. Inorganic Chemistry Frontiers, 2015, 2, 558-566.	3.0	56
66	Sensing Structure Based on Surface Plasmon Resonance in Chemically Etched Single Mode Optical Fibres. Plasmonics, 2015, 10, 319-327.	1.8	56
67	Spectroscopic Studies of Europium(III) and Gadolinium(III) Tris-β-diketonate Complexes with Diazabutadiene Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 3913-3919.	1.0	55
68	Dependence of the Lifetime upon the Excitation Energy and Intramolecular Energy Transfer Rates: The ⁵ D ₀ Eu ^{III} Emission Case. Chemistry - A European Journal, 2012, 18, 12130-12139.	1.7	54
69	Optical studies of ZnO nanocrystals doped with Eu3+ ions. Applied Physics A: Materials Science and Processing, 2007, 88, 129-133.	1.1	53
70	Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties. Journal of Materials Chemistry, 2005, 15, 3937.	6.7	52
71	Local Structure and Near-Infrared Emission Features of Neodymium-Based Amine Functionalized Organic/Inorganic Hybrids. Journal of Physical Chemistry B, 2005, 109, 20093-20104.	1.2	52
72	Novel polymer electrolytes based on gelatin and ionic liquids. Optical Materials, 2012, 35, 187-195.	1.7	51

#	Article	IF	CITATIONS
73	Scale up the collection area of luminescent solar concentrators towards metreâ€length flexible waveguiding photovoltaics. Progress in Photovoltaics: Research and Applications, 2016, 24, 1178-1193.	4.4	51
74	Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect. Optical and Quantum Electronics, 2016, 48, 1.	1.5	51
75	Structural modelling of Eu3+-based siloxane–poly(oxyethylene) nanohybrids. Journal of Materials Chemistry, 2001, 11, 3249-3257.	6.7	50
76	Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity. Nanoscale, 2011, 3, 1200.	2.8	50
77	Hydrothermal Synthesis, Structural Investigation, Photoluminescence Features, and Emission Quantum Yield of Eu and Euâ~'Gd Silicates with Apatite-Type Structure. Chemistry of Materials, 2006, 18, 5958-5964.	3.2	49
78	Photonicâ€onâ€aâ€chip: a thermal actuated Machâ€Zehnder interferometer and a molecular thermometer based on a single diâ€ureasil organicâ€inorganic hybrid. Laser and Photonics Reviews, 2013, 7, 1027-1035.	4.4	49
79	Surface Roughness Investigation in the Hard Turning of Steel Using Ceramic Tools. Materials and Manufacturing Processes, 2016, 31, 648-652.	2.7	49
80	Cadmium–Furandicarboxylate Coordination Polymers Prepared with Different Types of Pyridyl Linkers: Synthesis, Divergent Dimensionalities, and Luminescence Study. Crystal Growth and Design, 2013, 13, 5272-5281.	1.4	48
81	Lanthanide salen-type complexes exhibiting single ion magnet and photoluminescent properties. Dalton Transactions, 2016, 45, 2974-2982.	1.6	47
82	Photoluminescent Porous Alginate Hybrid Materials Containing Lanthanide Ions. Biomacromolecules, 2008, 9, 1945-1950.	2.6	46
83	Color tunability of intense upconversion emission from Er3+–Yb3+ co-doped SiO2–Ta2O5 glass ceramic planar waveguides. Journal of Materials Chemistry, 2012, 22, 9901.	6.7	45
84	Nano-titania doped with europium and neodymium showing simultaneous photoluminescent and photocatalytic behaviour. Journal of Materials Chemistry C, 2015, 3, 4970-4986.	2.7	45
85	Photopatternable Di-ureasilâ^'Zirconium Oxocluster Organicâ^'Inorganic Hybrids As Cost Effective Integrated Optical Substrates. Chemistry of Materials, 2008, 20, 3696-3705.	3.2	44
86	Lanthanopolyoxometalates as Building Blocks for Multiwavelength Photoluminescent Organic–Inorganic Hybrid Materials. European Journal of Inorganic Chemistry, 2009, 2009, 5088-5095.	1.0	44
87	Synthesis and study of Prussian blue type nanoparticles in an alginate matrix. Journal of Materials Chemistry, 2012, 22, 20232.	6.7	44
88	Multi-wavelength europium-based hybrid phosphors. Journal of Non-Crystalline Solids, 1999, 247, 203-208.	1.5	43
89	Structure and photoluminescent features of di-amide cross-linked alkylene–siloxane hybrids. Journal of Materials Chemistry, 2005, 15, 3876.	6.7	42
90	Multiwavelength Luminescence in Lanthanide-Doped Hydrocalumite and Mayenite. Chemistry of Materials, 2011, 23, 1993-2004.	3.2	42

#	Article	IF	CITATIONS
91	Oneâ€Step Synthesis and Optical Properties of Benzoate―and Biphenolateâ€Capped ZrO ₂ Nanoparticles. Advanced Functional Materials, 2012, 22, 4275-4283.	7.8	42
92	Blue-light excitable La2Ce2O7:Eu3+ red phosphors for white light-emitting diodes. Journal of Alloys and Compounds, 2020, 814, 152226.	2.8	42
93	Encapsulation of copper(II) complexes with pentadentate N3O2 Schiff base ligands derived from acetylacetone in NaX zeolite. Microporous and Mesoporous Materials, 2000, 38, 391-401.	2.2	41
94	Zirconium organophosphonates as photoactive and hydrophobic host materials for sensitized luminescence of Eu(iii), Tb(iii), Sm(iii) and Dy(iii). New Journal of Chemistry, 2004, 28, 1506-1513.	1.4	41
95	Synthesis, Characterisation and Luminescent Properties of Lanthanideâ€Organic Polymers with Picolinic and Glutaric Acids. European Journal of Inorganic Chemistry, 2007, 2007, 4238-4246.	1.0	41
96	Bifunctional Mixed-Lanthanide Cyano-Bridged Coordination Polymers Ln0.5Lnâ€20.5(H2O)5[W(CN)8] (Ln/Lnâ€	€²) Tj.£TQo	10 0 0 rgBT /O
97	Primary Luminescent Nanothermometers for Temperature Measurements Reliability Assessment. Advanced Photonics Research, 2021, 2, 2000169.	1.7	41
98	Placing a crown on Dy ^{III} – a dual property Ln ^{III} crown ether complex displaying optical properties and SMM behaviour. Journal of Materials Chemistry C, 2015, 3, 7738-7747.	2.7	40
99	Sol–gel derived nanocomposite hybrids for full colour displays. Journal of Luminescence, 2000, 87-89, 702-705.	1.5	39
100	Lanthanide complexes of 2-hydroxynicotinic acid: synthesis, luminescence properties and the crystal structures of [Ln(HnicO)2(μ-HnicO)(H2O)]·nH2O (Ln=Tb, Eu). Polyhedron, 2003, 22, 3529-3539.	1.0	39
101	Synthesis, characterisation and luminescence properties of MCM-41 impregnated with an Eu3+ β-diketonate complex. Microporous and Mesoporous Materials, 2008, 113, 453-462.	2.2	39
102	Rationalizing the Thermal Response of Dual enter Molecular Thermometers: The Example of an Eu/Tb Coordination Complex. Advanced Optical Materials, 2022, 10, .	3.6	39
103	Photoluminescent Porous Modular Lanthanide–Vanadium–Organic Frameworks. European Journal of Inorganic Chemistry, 2009, 2009, 4931-4945.	1.0	38
104	Sustainable luminescent solar concentrators based on organic–inorganic hybrids modified with chlorophyll. Journal of Materials Chemistry A, 2018, 6, 8712-8723.	5.2	38
105	Photoluminescent Rare-Earth Based Biphenolate Lamellar Nanostructures. Journal of Physical Chemistry C, 2007, 111, 2539-2544.	1.5	37
106	Highly emissive Zn–Ln metal–organic frameworks with an unusual 3D inorganic subnetwork. Chemical Communications, 2012, 48, 7964.	2.2	37
107	Field-induced slow magnetic relaxation and luminescence thermometry in a mononuclear ytterbium complex. Inorganic Chemistry Frontiers, 2020, 7, 3019-3029.	3.0	37
108	Transparent Luminescent Solar Concentrators Using Ln3+-Based Ionosilicas Towards Photovoltaic Windows. Energies, 2019, 12, 451.	1.6	37

#	Article	IF	CITATIONS
109	Eu3+-Assisted Short-Range Ordering of Photoluminescent Bridged Silsesquioxanes. Chemistry of Materials, 2010, 22, 3599-3609.	3.2	36
110	Self-Structuring of Lamellar Bridged Silsesquioxanes with Long Side Spacers. Journal of Physical Chemistry B, 2011, 115, 10877-10891.	1.2	36
111	Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet. Magnetochemistry, 2016, 2, 41.	1.0	36
112	Photoluminescent, transparent and flexible di-ureasil hybrids containing CdSe/ZnS quantum dots. Nanotechnology, 2008, 19, 155601.	1.3	35
113	Dual role of a di-urethanesil hybrid doped with europium β-diketonate complexes containing either waterligands or a bulky chelating ligand. Journal of Materials Chemistry, 2009, 19, 733-742.	6.7	35
114	Water-mediated structural tunability of an alkyl/siloxane hybrid: from amorphous material to lamellar structure or bilamellar superstructure. RSC Advances, 2012, 2, 2087.	1.7	35
115	Luminescent coatings from bipyridine-based bridged silsesquioxanes containing Eu3+ and Tb3+ salts. Journal of Materials Chemistry, 2012, 22, 13279.	6.7	35
116	Influence of the Matrix on the Red Emission in Europium Self-Activated Orthoceramics. Journal of Physical Chemistry C, 2015, 119, 17825-17835.	1.5	35
117	Solar spectral conversion based on plastic films of lanthanide-doped ionosilicas for photovoltaics: Down-shifting layers and luminescent solar concentrators. Journal of Rare Earths, 2020, 38, 531-538.	2.5	35
118	Modeling the emission red-shift in amorphous semiconductors and in organic-inorganic hybrids using extended multiple trapping. European Physical Journal B, 2006, 50, 371-378.	0.6	34
119	Intriguing light-emission features of ketoprofen-based Eu(III) adduct due to a strong electron–phonon coupling. Journal of Luminescence, 2016, 170, 357-363.	1.5	34
120	Sol–gel-derived potassium-based di-ureasils for "smart windows― Journal of Materials Chemistry, 2007, 17, 4239.	6.7	33
121	Catalytic Performance of Ceria Nanorods in Liquid-Phase Oxidations of Hydrocarbons with tert-Butyl Hydroperoxide. Molecules, 2010, 15, 747-765.	1.7	33
122	Synthesis, Texture, and Photoluminescence of Lanthanide-Containing Chitosanâ^'Silica Hybrids. Journal of Physical Chemistry B, 2010, 114, 77-83.	1.2	33
123	Seven-Coordinate Tb ³⁺ Complexes with 90% Quantum Yields: High-Performance Examples of Combined Singlet- and Triplet-to-Tb ³⁺ Energy-Transfer Pathways. Inorganic Chemistry, 2021, 60, 892-907.	1.9	33
124	Photoluminescence and quantum yields of organic/inorganic hybrids prepared through formic acid solvolysis. Optical Materials, 2008, 30, 1058-1064.	1.7	32
125	Multi-objective genetic algorithm applied to spectroscopic ellipsometry of organic-inorganic hybrid planar waveguides. Optics Express, 2010, 18, 16580.	1.7	32
126	Boosting the Emission Quantum Yield of Urea Cross-Linked Tripodal Poly(oxypropylene)/Siloxane Hybrids Through the Variation of Catalyst Concentration. European Journal of Inorganic Chemistry, 2012, 2012, 5390-5395.	1.0	32

#	Article	IF	CITATIONS
127	Largeâ€Area Tunable Visibleâ€toâ€Nearâ€Infrared Luminescent Solar Concentrators. Advanced Sustainable Systems, 2018, 2, 1800002.	2.7	32
128	High-Quantum-Yield Upconverting Er ³⁺ /Yb ³⁺ -Organic–Inorganic Hybrid Dual Coatings for Real-Time Temperature Sensing and Photothermal Conversion. Journal of Physical Chemistry C, 2020, 124, 19892-19903.	1.5	32
129	Super modules-based active QR codes for smart trackability and IoT: a responsive-banknotes case study. Npj Flexible Electronics, 2020, 4, .	5.1	32
130	Coordination modes of pyridine-carboxylic acid derivatives in samarium (III) complexes. Polyhedron, 2006, 25, 2471-2482.	1.0	31
131	Optical Properties of Lanthanide-Doped Lamellar Nanohybrids. ChemPhysChem, 2006, 7, 2215-2222.	1.0	31
132	Liquid Hydrostatic Pressure Optical Sensor Based on Micro-Cavity Produced by the Catastrophic Fuse Effect. IEEE Sensors Journal, 2015, 15, 5654-5658.	2.4	31
133	Engineering of metal-free bipyridine-based bridged silsesquioxanes for sustainable solid-state lighting. Journal of Materials Chemistry, 2012, 22, 6711.	6.7	30
134	[INVITED] Luminescent QR codes for smart labelling and sensing. Optics and Laser Technology, 2018, 101, 304-311.	2.2	30
135	Sustainable Liquid Luminescent Solar Concentrators. Advanced Sustainable Systems, 2019, 3, 1800134.	2.7	30
136	Sol-gel derived Li+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes. Journal of Solid State Electrochemistry, 2006, 10, 203-210.	1.2	29
137	Crystal structure and photoluminescence properties of lanthanide diphosphonates. Journal of Materials Chemistry, 2007, 17, 3696.	6.7	29
138	A study of the distribution of chitosan onto and within a paper sheet using a fluorescent chitosan derivative. Carbohydrate Polymers, 2009, 78, 760-766.	5.1	29
139	Real time random laser properties of Rhodamine-doped di-ureasil hybrids. Optics Express, 2010, 18, 7470.	1.7	29
140	A New Generation of Primary Luminescent Thermometers Based on Silicon Nanoparticles and Operating in Different Media. Particle and Particle Systems Characterization, 2016, 33, 740-748.	1.2	29
141	Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate. Electrochimica Acta, 2002, 47, 2421-2428.	2.6	28
142	Near-Infrared Luminescent and Magnetic Cyano-Bridged Coordination Polymers Nd(phen)n(DMF)m[M(CN)8] (M = Mo, W). Inorganic Chemistry, 2011, 50, 9924-9926.	1.9	28
143	Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres. Electronics Letters, 2012, 48, 1295.	0.5	28
144	Photoluminescent lamellar bilayer mono-alkyl-urethanesils. Journal of Sol-Gel Science and Technology, 2013, 65, 61-73.	1.1	28

#	Article	IF	CITATIONS
145	mOptical Sensing for the Internet of Things: A Smartphoneâ€Controlled Platform for Temperature Monitoring. Advanced Photonics Research, 2021, 2, 2000211.	1.7	28
146	Modeling of the emission red-shift in organic–inorganic di-ureasil hybrids. Journal of Non-Crystalline Solids, 2006, 352, 1225-1229.	1.5	27
147	Er ³⁺ -Based Diureasil Organicâ^'Inorganic Hybrids. Journal of Physical Chemistry C, 2008, 112, 19346-19352.	1.5	27
148	A cost-effective quantum yield measurement setup for upconverting nanoparticles. Journal of Luminescence, 2017, 189, 64-70.	1.5	27
149	Sustainable Dual-Mode Smart Windows for Energy-Efficient Buildings. ACS Applied Energy Materials, 2019, 2, 1951-1960.	2.5	27
150	Emission quantum yield of a europium(III) tris-β-diketonate complex bearing a 1,4-diaza-1,3-butadiene: Comparison with theoretical prediction. Chemical Physics Letters, 2005, 413, 22-24.	1.2	26
151	β-Cyclodextrin inclusion of europium(III) tris(β-diketonate)-bipyridine. Polyhedron, 2006, 25, 1471-1476.	1.0	26
152	Photoluminescent Layered Lanthanide Silicate Nanoparticles. Chemistry of Materials, 2008, 20, 205-212.	3.2	26
153	Photoluminescent polymer electrolyte based on agar and containing europium picrate for electrochemical devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 488-493.	1.7	25
154	Di-amidosils with tunable structure, morphology and emission quantum yield: the role of hydrogen bonding. Journal of Materials Chemistry C, 2015, 3, 6844-6861.	2.7	25
155	Synergy of Neodymium and Copper for Fast and Reversible Visible-light Promoted Photochromism, and Photocatalysis, in Cu/Nd-TiO ₂ Nanoparticles. ACS Applied Energy Materials, 2019, 2, 3237-3252.	2.5	25
156	Efficient Visibleâ€Lightâ€Excitable Eu ³⁺ Complexes for Red Organic Lightâ€Emitting Diodes. European Journal of Inorganic Chemistry, 2020, 2020, 1260-1270.	1.0	25
157	Incorporation of the Eu(tta)3(H2O)2 complex into a co-condensed d-U(600)/d-U(900) matrix. Journal of Luminescence, 2008, 128, 205-212.	1.5	24
158	Li ⁺ - and Eu ³⁺ -Doped Poly(ε-caprolactone)/Siloxane Biohybrid Electrolytes for Electrochromic Devices. ACS Applied Materials & Interfaces, 2011, 3, 2953-2965.	4.0	24
159	High Quantum Yield Dual Emission from Gas-Phase Grown Crystalline Si Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 10375-10383.	1.5	24
160	Integrated Optical Mach-Zehnder Interferometer Based on Organic-Inorganic Hybrids for Photonics-on-a-Chip Biosensing Applications. Sensors, 2018, 18, 840.	2.1	24
161	Synchronous Temperature and Magnetic Field Dualâ€Sensing by Luminescence in a Dysprosium Singleâ€Molecule Magnet. Advanced Optical Materials, 2021, 9, 2101495.	3.6	24
162	Customized Luminescent Multiplexed Quickâ€Response Codes as Reliable Temperature Mobile Optical Sensors for eHealth and Internet of Things. Advanced Photonics Research, 2022, 3, 2100206.	1.7	24

#	Article	IF	CITATIONS
163	Lanthanopolyoxotungstoborates: Synthesis, Characterization, and Layer-by-Layer Assembly of Europium Photoluminescent Nanostructured Films. Journal of Nanoscience and Nanotechnology, 2004, 4, 214-220.	0.9	23
164	New Template-Free Layered Manganese(III) Phosphate: Hydrothermal Synthesis, Ab Initio Structural Determination, and Magnetic Properties. Chemistry of Materials, 2007, 19, 6025-6029.	3.2	23
165	Lamellar mono-amidosil hybrids incorporating monomethinecyanine dyes. Journal of Materials Chemistry C, 2013, 1, 2290.	2.7	23
166	Lanthanide Orthoantimonate Light Emitters: Structural, Vibrational, and Optical Properties. Chemistry of Materials, 2014, 26, 6351-6360.	3.2	23
167	Novel lanthanide luminescent materials based on multifunctional complexes of 2-sulfanylpyridine-3-carboxylic acid and silica/titania hosts. Journal of Materials Chemistry, 2011, 21, 15600.	6.7	22
168	Nanostructuring of Bridged Organosilane Precursors with Pendant Alkyl Chains. European Journal of Inorganic Chemistry, 2015, 2015, 1218-1225.	1.0	22
169	Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect. Measurement: Journal of the International Measurement Confederation, 2016, 77, 265-268.	2.5	22
170	Threeâ€Mode Modulation Electrochromic Device with High Energy Efficiency for Windows of Buildings Located in Continental Climatic Regions. Advanced Sustainable Systems, 2019, 3, 1800115.	2.7	22
171	Preparation of photoluminescent monolayers based on a polyoxotungstoeuropate. Journal of Alloys and Compounds, 2004, 374, 371-376.	2.8	21
172	Luminescent urea cross-linked tripodal siloxane-based hybrids. Journal of Sol-Gel Science and Technology, 2013, 65, 83-92.	1.1	21
173	Encapsulation of a [Dy(OH ₂) ₈] ³⁺ cation: magneto-optical and theoretical studies of a caged, emissive SMM. Chemical Communications, 2016, 52, 11335-11338.	2.2	21
174	Promoting a Significant Increase in the Photoluminescence Quantum Yield of Terbium(III) Complexes by Ligand Modification. Inorganic Chemistry, 2019, 58, 12099-12111.	1.9	21
175	Environmentally friendly luminescent solar concentrators based on an optically efficient and stable green fluorescent protein. Green Chemistry, 2020, 22, 4943-4951.	4.6	21
176	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 315-319.	1.1	20
177	Photoluminescent Layered Y(III) and Tb(III) Silicates Doped with Ce(III). Journal of Physical Chemistry B, 2006, 110, 15312-15316.	1.2	20
178	Microstructure-mechanical property relationship to copper alloys with shape memory during thermomechanical treatments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 77-87.	1.1	20
179	MCM-41 Derivatised with Pyridyl Groups and Its Use as a Support for Luminescent Europium(III) Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 3786-3795.	1.0	20
180	Modelling the luminescence of extended solids: an example of a highly luminescent MCM-41 impregnated with a Eu ³⁺ β-diketonate complex. Journal of Materials Chemistry C, 2014, 2, 9701-9711.	2.7	20

#	Article	IF	CITATIONS
181	Study of the influence of magnetic dilution over relaxation processes in a Zn/Dy single-ion magnet by correlation between luminescence and magnetism. RSC Advances, 2016, 6, 108810-108818.	1.7	20
182	Structuring of Alkylâ€Triazole Bridged Silsesquioxanes. ChemistrySelect, 2017, 2, 432-442.	0.7	20
183	Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids. Journal of Sol-Gel Science and Technology, 2008, 48, 80-85.	1.1	19
184	Highly luminescent di-ureasil hybrid doped with a Eu(III) complex including dipicolinate ligands. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 156-160.	2.0	19
185	New Crystalline Layered Zinc Phosphate with 10-Membered-Ring Channels Perpendicular to Layers. Inorganic Chemistry, 2009, 48, 4598-4600.	1.9	19
186	Efficient spectrally dynamic blueâ€toâ€green emission of bipyridineâ€based bridged silsesquioxanes for solidâ€state lighting. Physica Status Solidi - Rapid Research Letters, 2010, 4, 55-57.	1.2	19
187	Simple measurement of surface free energy using a web cam. Revista Brasileira De Ensino De Fisica, 2012, 34, .	0.2	19
188	Colour multiplexing of quickâ€response (QR) codes. Electronics Letters, 2014, 50, 1828-1830.	0.5	19
189	A green-emitting α-substituted β-diketonate Tb ³⁺ phosphor for ultraviolet LED-based solid-state lighting. Journal of Coordination Chemistry, 2014, 67, 4076-4089.	0.8	19
190	Influence of TiO_2 host crystallinity on Er^3+ light emission. Optical Materials Express, 2016, 6, 1664.	1.6	19
191	A novel near monochromatic red emissive europium(III) metal-organic framework based on 1,2,4,5-benzenetetracarboxylate: From synthesis to photoluminescence studies. Journal of Solid State Chemistry, 2017, 253, 176-183.	1.4	19
192	Highly sensitive and precise optical temperature sensors based on new luminescent Tb ³⁺ /Eu ³⁺ tetrakis complexes with imidazolic counterions. Materials Advances, 2020, 1, 1988-1995.	2.6	19
193	Photoluminescence of bulks and thin films of Eu3+-doped organic/inorganic hybrids. Journal of Alloys and Compounds, 2008, 451, 136-139.	2.8	18
194	K+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for electrochromic devices. Solid State Ionics, 2011, 204-205, 129-139.	1.3	18
195	Metal-Free Highly Luminescent Silica Nanoparticles. Langmuir, 2012, 28, 8190-8196.	1.6	18
196	Fractality and metastability of a complex amide cross-linked dipodal alkyl/siloxane hybrid. RSC Advances, 2014, 4, 59664-59675.	1.7	18
197	Green Li+- and Er3+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for smart electrochromic windows. Solar Energy Materials and Solar Cells, 2014, 123, 203-210.	3.0	18
198	Thermal properties of lipid bilayers derived from the transient heating regime of upconverting nanoparticles. Nanoscale, 2020, 12, 24169-24176.	2.8	18

#	Article	IF	CITATIONS
199	Synthesis and crystal structure of [nBu4N][Er(pic)4]·5.5H2O: a new infrared emitter. Inorganic Chemistry Communication, 2003, 6, 1234-1238.	1.8	17
200	Photoluminescent hybrid materials based on lanthanopolyoxotungstates and 3-hydroxypicolinic acid. Journal of Alloys and Compounds, 2008, 451, 422-425.	2.8	17
201	Terbium(III)-containing organic–inorganic hybrids synthesized through hydrochloric acid catalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 214-221.	2.0	17
202	Lamellar mono-amidosil hybrids doped with Rhodamine (B) methyl ester perchlorate. Journal of Sol-Gel Science and Technology, 2014, 72, 239-251.	1.1	17
203	Dual-Property Supramolecular H-Bonded 15-Crown-5 Ln(III) Chains: Joint Magneto-Luminescence and <i>ab Initio</i> Studies. Inorganic Chemistry, 2017, 56, 7344-7353.	1.9	17
204	Efficient green-emitting Tb3+-doped di-ureasil coating phosphors for near-UV excited light-emitting diodes. Journal of Luminescence, 2020, 219, 116910.	1.5	17
205	A Hybrid Materials Approach for Fabricating Efficient WLEDs Based on Diâ€Ureasils Doped with Carbon Dots and a Europium Complex. Advanced Materials Technologies, 2022, 7, 2100727.	3.0	17
206	Synthesis, Characterization, and Luminescence Properties of Eu3+ 3-Phenyl-4-(4-toluoyl)-5-isoxazolonate Based Organic-Inorganic Hybrids. European Journal of Inorganic Chemistry, 2006, 2006, 3923-3929.	1.0	16
207	Lanthanide-based lamellar nanohybrids: The case of erbium. Materials Science and Engineering C, 2007, 27, 1368-1371.	3.8	16
208	Hydrothermal synthesis, structural, and spectroscopic studies of vanadium substituted ETS-4. Microporous and Mesoporous Materials, 2008, 110, 436-441.	2.2	16
209	Fabrication of low-cost thermo-optic variable wave plate based on waveguides patterned on di-ureasil hybrids. Optics Express, 2014, 22, 27159.	1.7	16
210	Site-selective Eu(<scp>iii</scp>) spectroscopy of highly efficient luminescent mixed-metal Pb(<scp>ii</scp>)/Eu(<scp>iii</scp>) coordination polymers. RSC Advances, 2017, 7, 6093-6101.	1.7	16
211	Luminescent Electrochromic Devices for Smart Windows of Energy-Efficient Buildings. Energies, 2018, 11, 3513.	1.6	16
212	Flexible Optical Amplifier for Visible-Light Communications Based on Organic–Inorganic Hybrids. ACS Omega, 2018, 3, 13772-13781.	1.6	16
213	(INVITED) JOYSpectra: A web platform for luminescence of lanthanides. Optical Materials: X, 2021, 11, 100080.	0.3	16
214	Eu3+Coordination in an Organic/Inorganic Hybrid Matrix with Methyl End-Capped Short Polyether Chains. Journal of Physical Chemistry B, 2005, 109, 7110-7119.	1.2	15
215	A simple and general route for the preparation of pure and high crystalline nanosized lanthanide silicates with the structure of apatite at low temperature. Journal of Solid State Chemistry, 2010, 183, 2726-2730.	1.4	15
216	Thin film optimization design of organic–inorganic hybrids for waveguide highâ€rejection optical filters. Physica Status Solidi - Rapid Research Letters, 2011, 5, 280-282.	1.2	15

#	Article	IF	CITATIONS
217	Electro-optical properties of the DNA-Eu3+ bio-membranes. Journal of Electroanalytical Chemistry, 2013, 708, 116-123.	1.9	15
218	Luminescent Transparent Composite Films Based on Lanthanopolyoxometalates and Filmogenic Polysaccharides. European Journal of Inorganic Chemistry, 2013, 2013, 1890-1896.	1.0	15
219	Infrared and Raman spectroscopy of non-conventional hydrogen bonding between <i>N</i> , <i>N</i> ′-disubstituted urea and thiourea groups: a combined experimental and theoretical investigation. Physical Chemistry Chemical Physics, 2019, 21, 3310-3317.	1.3	15
220	Low-Cost and High-Performance Optical Fiber-Based Sensor for Liquid Level Monitoring. IEEE Sensors Journal, 2019, 19, 4882-4888.	2.4	15
221	Sol–gel-derived POE/siliceous hybrids doped with Na+ ions: morphology and ionic conductivity. Solid State Ionics, 2003, 156, 85-93.	1.3	14
222	Study of sol–gel derived di-ureasils doped with zinc triflate. Solid State Sciences, 2006, 8, 1484-1491.	1.5	14
223	Crystal Structure, Solid-State NMR Spectroscopic and Photoluminescence Studies of Organic-Inorganic Hybrid Materials (HL)6[Ge6(OH)6(hedp)6]·2(L)·nH2O, L = hqn or phen. European Journal of Inorganic Chemistry, 2006, 2006, 4741-4751.	1.0	14
224	Enhanced Photoluminescence Features of Rare Earth Phenylphosphonate Hybrid Nanostructures Synthesized under Nonaqueous Conditions. Journal of Physical Chemistry C, 2010, 114, 6290-6297.	1.5	14
225	Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy. Nanoscale Advances, 2019, 1, 2537-2545.	2.2	14
226	Protein Cohabitation: Improving the Photochemical Stability of R-Phycoerythrin in the Solid State. Journal of Physical Chemistry Letters, 2020, 11, 6249-6255.	2.1	14
227	Bioâ€Based Solar Energy Harvesting for Onsite Mobile Optical Temperature Sensing in Smart Cities. Advanced Science, 2022, 9, e2104801.	5.6	14
228	Optically functional nanocomposites with poly(oxyethylene)-based di-ureasils and mesoporous MCM-41. Microporous and Mesoporous Materials, 2006, 94, 185-192.	2.2	13
229	Terbium(III) complexes of 2-aminonicotinic, thiosalicylic and anthranilic acids: synthesis and photoluminescence properties. Journal of Alloys and Compounds, 2008, 451, 575-577.	2.8	13
230	Structure, thermal properties, conductivity and electrochemical stability of di-urethanesil hybrids doped with LiCF3SO3. Ionics, 2010, 16, 193-201.	1.2	13
231	Photoluminescent bimetallic-3-hydroxypicolinate/graphene oxide nanocomposite. RSC Advances, 2012, 2, 9443.	1.7	13
232	A novel 3-D cuprous iodide polymer with a high Cu/I ratio. Dalton Transactions, 2018, 47, 3253-3257.	1.6	13
233	Radiation-to-heat conversion efficiency in SrF2:Yb3+/Er3+ upconverting nanoparticles. Optical Materials, 2018, 83, 1-6.	1.7	13
234	Chlorine-free, monolithic lanthanide series rare earth oxide aerogels via epoxide-assisted sol-gel method. Journal of Sol-Gel Science and Technology, 2019, 89, 176-188.	1.1	13

#	Article	IF	CITATIONS
235	A new series of 3D lanthanide phenoxycarboxylates: synthesis, crystal structure, magnetism and photoluminescence studies. CrystEngComm, 2021, 23, 4143-4151.	1.3	13
236	A perspective on sustainable luminescent solar concentrators. Journal of Applied Physics, 2022, 131, .	1.1	13
237	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44, 261-266.	1.6	12
238	Local coordination of Eu(III) in organic/inorganic amine functionalized hybrids. Journal of Alloys and Compounds, 2004, 374, 50-55.	2.8	12
239	Incorporation of mixed valence vanadium in the microporous titanosilicate AM-2. Microporous and Mesoporous Materials, 2006, 96, 363-368.	2.2	12
240	Efficient second harmonic generation by <i>para</i> -nitroaniline embedded in electro-spun polymeric nanofibres. Journal Physics D: Applied Physics, 2018, 51, 105106.	1.3	12
241	One-Minute Synthesis of Size-Controlled Fucoidan-Gold Nanosystems: Antitumoral Activity and Dark Field Imaging. Materials, 2020, 13, 1076.	1.3	12
242	Functionalization of atomic force microscope tips by dielectrophoretic assembly of Gd ₂ O ₃ :Eu ³⁺ nanorods. Nanotechnology, 2008, 19, 295702.	1.3	11
243	Crystal structure, topology, tiling and photoluminescence properties of 4d–4f hetero-metal organic frameworks based on 3,5-pyrazoledicaboxylate. RSC Advances, 2014, 4, 7818.	1.7	11
244	Auxiliary ligand-assisted structural diversities of two coordination polymers with 2-hydroxyquinoline-4-carboxylic acid. Inorganic Chemistry Communication, 2014, 40, 92-96.	1.8	11
245	Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect. Microwave and Optical Technology Letters, 2015, 57, 972-974.	0.9	11
246	Flexible Blue-Light Fiber Amplifiers to Improve Signal Coverage in Advanced Lighting Communication Systems. Cell Reports Physical Science, 2020, 1, 100041.	2.8	11
247	In vitro assays and nanothermometry studies of infrared-to-visible upconversion of nanocrystalline Er3+,Yb3+ co-doped Y2O3 nanoparticles for theranostic applications. Physica B: Condensed Matter, 2022, 624, 413447.	1.3	11
248	Primary thermometers based on sol–gel upconverting Er3+/Yb3+ co-doped yttrium tantalates with high upconversion quantum yield and emission color tunability. Journal of Sol-Gel Science and Technology, 2022, 102, 249-263.	1.1	11
249	Luminescent thermometry based on Er3+/Yb3+ co-doped yttrium niobate with high NIR emission and NIR-to-visible upconversion quantum yields. Journal of Luminescence, 2022, 248, 118986.	1.5	11
250	Determination of Refractive Index Contrast and Surface Contraction in Waveguide Channels Using Multiobjective Genetic Algorithm Applied to Spectroscopic Ellipsometry. Journal of Lightwave Technology, 2011, 29, 2971-2978.	2.7	10
251	Luminescent DNA- and Agar-Based Membranes. Journal of Nanoscience and Nanotechnology, 2014, 14, 6685-6691.	0.9	10
252	Influence of the Crystal Structure on the Luminescence Properties of Mixed Eu,La-(1,10-Phenanthroline) Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 4861-4868.	1.0	10

#	Article	IF	CITATIONS
253	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 375-381.	1.1	9
254	Refinement of the layered titanosilicate AM-1 from single-crystal X-ray diffraction data. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, i186-i186.	0.2	9
255	Optical material composed of a di-urethanesil host hybrid and a europium complex. Journal of Alloys and Compounds, 2008, 451, 201-205.	2.8	9
256	UV laser photofabrication of waveguide couplers using selfâ€patterning organic–inorganic hybrids. Microwave and Optical Technology Letters, 2011, 53, 2304-2307.	0.9	9
257	Functional novel polymer electrolytes containing europium picrate. Materials Research Innovations, 2011, 15, s3-s7.	1.0	9
258	Mild hydrothermal synthesis, crystal structure, photoluminescence properties and emission quantum yield of a new zirconium germanate with garnet-type structure. Journal of Solid State Chemistry, 2012, 190, 18-23.	1.4	9
259	Redox behaviour, electrochromic properties and photoluminescence of potassium lanthano phosphomolybdate sandwich-type compounds. RSC Advances, 2013, 3, 16697.	1.7	9
260	Influence of the surface termination on the light emission of crystalline silicon nanoparticles. Nanotechnology, 2016, 27, 325703.	1.3	9
261	Long range energy transfer in graphene hybrid structures. Journal Physics D: Applied Physics, 2016, 49, 315102.	1.3	9
262	Luminescent κ-Carrageenan-Based Electrolytes Containing Neodymium Triflate. Molecules, 2019, 24, 1020.	1.7	9
263	Red-Emitting Coatings for Multifunctional UV/Red Emitting LEDs Applied in Plant Circadian Rhythm Control. ECS Journal of Solid State Science and Technology, 2020, 9, 016008.	0.9	9
264	High Eu ³⁺ concentration quenching in Y ₃ TaO ₇ solid solution for orange-reddish emission in photonics. RSC Advances, 2020, 10, 16917-16927.	1.7	9
265	Sustainable Smart Tags with Two‣tep Verification for Anticounterfeiting Triggered by the Photothermal Response of Upconverting Nanoparticles. Advanced Photonics Research, 2022, 3, .	1.7	9
266	Lanthanides for the new generation of optical sensing and Internet of Things. Fundamental Theories of Physics, 2022, , 31-128.	0.1	9
267	Smart Optical Sensors for Internet of Things: Integration of Temperature Monitoring and Customized Security Physical Unclonable Functions. IEEE Access, 2022, 10, 24433-24443.	2.6	9
268	Photonic-Structured Perovskite Solar Cells: Detailed Optoelectronic Analysis. ACS Photonics, 2022, 9, 2408-2421.	3.2	9
269	Optical studies on the red luminescence of InGaN epilayers. Superlattices and Microstructures, 2004, 36, 625-632.	1.4	8
270	Structure and photoluminescence of di-amidosil nanohybrids incorporating europium triflate. Journal of Alloys and Compounds, 2008, 451, 510-515.	2.8	8

#	Article	IF	CITATIONS
271	Eu ^{III} â€Doping of Lamellar Bilayer and Amorphous Monoâ€Amide Crossâ€Linked Alkyl/Siloxane Hybrids. European Journal of Inorganic Chemistry, 2010, 2010, 2688-2699.	1.0	8
272	Enhanced photoluminescence features of Eu3+-modified di-ureasil-zirconium oxocluster organic–inorganic hybrids. Optical Materials, 2010, 32, 1587-1591.	1.7	8
273	Photoluminescent Epoxy/Gd ₂ O ₃ :Eu ³⁺ UV ured Nanocomposites. Macromolecular Materials and Engineering, 2013, 298, 181-189.	1.7	8
274	Highly Efficient Luminescent Polycarboxylate Lanthanide Complexes Incorporated into Di-Ureasils by an In-Situ Sol—Gel Process. Polymers, 2018, 10, 434.	2.0	8
275	Making Prussian blue analogues nanoparticles luminescent: effect of the luminophore confinement over the properties. Nanoscale, 2019, 11, 7097-7101.	2.8	8
276	Short chain U(600) di-urea cross-linked poly(oxyethylene)/siloxane ormolytes doped with lanthanum triflate salt. Electrochimica Acta, 2002, 47, 2551-2555.	2.6	7
277	Optical properties and local structure of Eu3+-doped synthetic analogue of the microporous titanosilicate mineral sitinakite. Journal of Luminescence, 2008, 128, 1108-1112.	1.5	7
278	Enhanced Eu ³⁺ Emission in Aqueous Phosphotungstate Colloidal Systems: Stabilization of Polyoxometalate Nanostructures. Langmuir, 2010, 26, 14170-14176.	1.6	7
279	Lanthanide-Containing 2,2′-Bipyridine Bridged Urea Cross-Linked Polysilsesquioxanes. Spectroscopy Letters, 2010, 43, 321-332.	0.5	7
280	Optical filters and resonant cavities based on di-ureasil organic–inorganic hybrids. Journal of Sol-Gel Science and Technology, 2011, 59, 475-479.	1.1	7
281	Effect of the Anodic Titania Layer Thickness on Electrodeposition of Zinc on Ti/TiO ₂ from Deep Eutectic Solvent. Journal of the Electrochemical Society, 2017, 164, D88-D94.	1.3	7
282	Monitoring of nanoclay–protein adsorption isotherms via fluorescence techniques. Colloids and Surfaces B: Biointerfaces, 2017, 157, 373-380.	2.5	7
283	Novel Highly Luminescent Amine-Functionalized Bridged Silsesquioxanes. Frontiers in Chemistry, 2017, 5, 131.	1.8	7
284	UV-converting blue-emitting polyfluorene-based organic-inorganic hybrids for solid state lighting. Polymer, 2019, 174, 109-113.	1.8	7
285	Phosphor-based green-emitting coatings for circadian lighting. Journal of Luminescence, 2020, 224, 117298.	1.5	7
286	Instantaneous fibrillation of egg white proteome with ionic liquid and macromolecular crowding. Communications Materials, 2020, 1, .	2.9	7
287	Lanthanide compounds containing a benzo-15-crown-5 derivatised [60]fullerene and the related [Tb(H2O)3(NO3)2(acac)]·C14H2OO5supramolecular adduct. New Journal of Chemistry, 2004, 28, 1352-1358.	1.4	6
288	Photoluminescence of Eu3+-doped nanosized microporous titanosilicate—A structural analogue of the mineral pharmacosiderite. Journal of Alloys and Compounds, 2008, 451, 125-127.	2.8	6

#	Article	IF	CITATIONS
289	Hydrothermal Synthesis, Crystal Structure, and Magnetic Properties of a New Inorganic Vanadium(III) Phosphate with a Chain Structure. Inorganic Chemistry, 2008, 47, 10062-10066.	1.9	6
290	Low-Cost Spectrograph Based on a WebCam: A Student Project. International Journal of Electrical Engineering and Education, 2014, 51, 1-11.	0.4	6
291	White-Light Emitting Di-Ureasil Hybrids. Materials, 2018, 11, 2246.	1.3	6
292	Surface crystallization of ionic liquid crystals. Physical Chemistry Chemical Physics, 2019, 21, 17792-17800.	1.3	6
293	Silicon Nanoparticle Films Infilled with Al ₂ O ₃ Using Atomic Layer Deposition for Photosensor, Light Emission, and Photovoltaic Applications. ACS Applied Nano Materials, 2020, 3, 5033-5044.	2.4	6
294	Reprogrammable and Reconfigurable Photonic Molecular Logic Gates Based on Ln ³⁺ lons. Advanced Optical Materials, 2022, 10, .	3.6	6
295	Nanostructure and luminescent properties of sol-gel derived europium-doped amine functionalised hybrids. Journal of Sol-Gel Science and Technology, 2006, 37, 99-104.	1.1	5
296	Hierarchically Constrained Dynamics and Emergence of Complex Behavior in Nanohybrids. Small, 2010, 6, 386-390.	5.2	5
297	Lamellar Salt-Doped Hybrids with Two Reversible Order/Disorder Phase Transitions. Journal of Physical Chemistry B, 2013, 117, 14529-14543.	1.2	5
298	Luminescent Electrochromic Device Based on a Biohybrid Electrolyte Doped with a Mixture of Potassium Triflate and a Europium Â-diketonate Complex. ECS Transactions, 2014, 61, 213-225.	0.3	5
299	Eu(II)â€Activated Silicates for UV Lightâ€Emitting Diodes Tuning into Warm White Light. Advanced Engineering Materials, 2020, 22, 2000422.	1.6	5
300	High Emission Quantum Yield Tb3+ -Activated Organic-Inorganic Hybrids for UV-Down-Shifting Green Light-Emitting Diodes. European Journal of Inorganic Chemistry, 2020, 2020, 1736-1742.	1.0	5
301	3D sub-cellular localization of upconverting nanoparticles through hyperspectral microscopy. Physica B: Condensed Matter, 2022, 626, 413470.	1.3	5
302	Demodulating the Response of Optical Fibre Long-Period Gratings: Genetic Algorithm Approach. Chinese Physics Letters, 2006, 23, 2480-2482.	1.3	4
303	d-Poly(e-caprolactone) (530)/siloxane biohybrid films doped with protic ionic liquids. Journal of Electroanalytical Chemistry, 2017, 799, 249-256.	1.9	4
304	Ultraviolet-Filtering Luminescent Transparent Coatings for High-Performance PTB7-Th:ITIC–Based Organic Solar Cells. Frontiers in Nanotechnology, 2021, 3, .	2.4	4
305	Solar spectral management with electrochromic devices including PMMA films doped with biluminescent ionosilicas. Journal of Sol-Gel Science and Technology, 2022, 101, 58-70.	1.1	4
306	Modification of the luminescence properties of an Europium(III) Tris(β-diketonate) Complex by Inclusion in γ-cyclodextrin and 2,3,6-trimethyl-γ-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 329-333.	1.6	3

#	Article	IF	CITATIONS
307	Photofunctional hybrid silica microspheres covalently functionalized with metalloporphyrins. Journal of Solid State Chemistry, 2012, 194, 9-14.	1.4	3
308	Natural Membranes for Application in Biomedical Devices. Molecular Crystals and Liquid Crystals, 2012, 562, 147-155.	0.4	3
309	Easily processable multimodal spectral converters based on metal oxide/organic—inorganic hybrid nanocomposites. Nanotechnology, 2015, 26, 405601.	1.3	3
310	Eu(II)â€Activated Silicates for UV Lightâ€Emitting Diodes Tuning into Warm White Light. Advanced Engineering Materials, 2020, 22, 2070036.	1.6	3
311	Cellulose Based Photonic Materials Displaying Direction Modulated Photoluminescence. Frontiers in Bioengineering and Biotechnology, 2021, 9, 617328.	2.0	3
312	Luminescent Poly(vinylidene fluoride)â€Based Inks for Anticounterfeiting Applications. Advanced Photonics Research, 2022, 3, 2100151.	1.7	3
313	Uncovering the Use of Fucoxanthin and Phycobiliproteins into Solid Matrices to Increase Their Emission Quantum Yield and Photostability. Applied Sciences (Switzerland), 2022, 12, 5839.	1.3	3
314	Customized Luminescent Multiplexed Quickâ€Response Codes as Reliable Temperature Mobile Optical Sensors for eHealth and Internet of Things. Advanced Photonics Research, 2022, 3, .	1.7	3
315	Organic-inorganic hybrids for the new generation of optical networks. , 2009, , .		2
316	Sensing structure based on surface plasmonic resonance in single mode optical fibers chemically etched. , 2013, , .		2
317	Thermo-optic variable attenuator/waveplate based on waveguides patterned on organic-inorganic hybrids. , 2013, , .		2
318	Flexible 90 \hat{A}^o hybrid coupler for coherent optical systems based on organic-inorganic hybrids. , 2016, , .		2
319	Fabrication and optical properties of thin films with sol–gel derived di-ureasils doped with Disperse Red 1. Optical and Quantum Electronics, 2016, 48, 1.	1.5	2
320	Flexible photoluminescent waveguide amplifiers to improve visible light communication platforms. IET Optoelectronics, 2020, 14, 356-358.	1.8	2
321	Walsh-coded orthogonal chaotic shift keying for key distribution in visible light communication systems. Optics Communications, 2022, 505, 127538.	1.0	2
322	Random bit sequence generation from speckle patterns produced with multimode waveguides. IET Optoelectronics, 2022, 16, 174-178.	1.8	2
323	Waveguide features in self-patternable amine functionalized organic- inorganic hybrids. , 2007, , .		1
324	Syntheses of Mesoporous and Microporous Materials via 2-Methylpentamethylenediamine. Chemistry Letters, 2008, 37, 100-101.	0.7	1

#	Article	IF	CITATIONS
325	Selective mode launching in multimode UV-patterned channel waveguide in organic-inorganic hybrids. , 2011, , .		1
326	Refractive index characterization of waveguide channels using spectroscopic ellipsometry. , 2011, , .		1
327	Evaluation of the fuse effect propagation velocity in bend loss insensitive fibers. , 2012, , .		1
328	Role of the reactive atmosphere during the sol–gel synthesis on the enhancing of the emission quantum yield of urea cross-linked tripodal siloxane-based hybrids. Journal of Sol-Gel Science and Technology, 2013, 70, 227.	1.1	1
329	Di-urethanesil hybrid electrolytes doped with Mg(CF3SO3)2. Ionics, 2014, 20, 29-36.	1.2	1
330	Polarization state control using thermo-optic effect in organic-inorganic hybrids waveguides. , 2014, ,		1
331	Performance assessment of a QPSK coherent demodulator based on organic-inorganic hybrids. , 2017, ,		1
332	Promoting IoT Education for Pre-university Students With Coloured QR Codes : Colour multiplexed QR codes. , 2018, , .		1
333	Green photonics integrated circuit for NGOA coherent receivers. Optics and Laser Technology, 2019, 115, 222-228.	2.2	1
334	A Cost-Effective demodulator for the Next Generation of Optical Access Networks Receivers. , 2018, , .		1
335	Optical Authentication of Physically Unclonable Functions Using Flexible and Versatile Organic-Inorganic Hybrids. , 2021, , .		1
336	Lanthanide Emission for Solar Spectral Converters: An Energy Transfer Viewpoint. Springer Series on Fluorescence, 2021, , 1-33.	0.8	1
337	Modal analysis of organic-inorganic hybrid planar waveguides for integrated optics. , 2007, , .		Ο
338	Photoluminescent Materials Based on Silica Doped with Lanthanide Complexes of 4′-Formylbenzo-15-Crown-5. Journal of Nanoscience and Nanotechnology, 2010, 10, 2779-2786.	0.9	0
339	Low-cost optical components based on organic-inorganic hybrids produced using direct UV writing technique. , 2010, , .		Ο
340	High-rejection optical filters patterned on organic-inorganic hybrids using UV laser direct writing. , 2011, , .		0
341	Integrated optics structures on sol-gel derived organic-inorganic hybrids for optical communications. , 2011, , .		0
342	Light-emitting lanthanide-based organic–inorganic hybrids. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, s49-s49.	0.3	0

#	Article	IF	CITATIONS
343	Thermo-optic Mach-Zehnder modulator with organic-inorganic hybrid materials. , 2012, , .		0
344	Thermo-optical attenuator fabricated through direct UV laser writing in organic-inorganic hybrids. , 2012, , .		0
345	Optical fibre monitoring of Madeira wine estufagem process. , 2013, , .		0
346	Plastic optical fibre sensor for quality control in food industry. , 2013, , .		0
347	Sensors based on recycled optical fibers destroyed by the catastrophic fuse effect. Proceedings of SPIE, 2014, , .	0.8	0
348	Optical strain sensor based on FPI micro-cavities produced by the fiber fuse effect. Proceedings of SPIE, 2014, , .	0.8	0
349	Revisiting thermal-actuated integrated optics devices based on organic-inorganic hybrids. , 2015, , .		0
350	Concentration dependence of the infrared photoluminescence of Pr3+in fluoroindate glasses. , 2016, ,		0
351	Electro-Optic Organic-Inorganic Hybrids for Signal Modulation. , 2018, , .		0
352	Multifunctional Materials for Integrated Optics with Enhanced and Tuneable Optical Properties. , 2019, , .		0
353	Photonic materials displaying direction modulated photoluminescence. , 2019, , .		0
354	Green photonics integrated circuits based on organic–inorganic hybrids. , 2020, , 229-266.		0
355	Copper and rare earth TiO ₂ nano-heterostructure as a bifunctional material. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C515-C515.	0.0	0
356	Coloured QR codes for the Internet of Things. , 2019, , .		0
357	Photovoltaic spectral conversion materials: The role of sol–gel processing. , 2020, , 145-182.		0