List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7700411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cation‧tructure Effects on Zinc Electrodeposition and Crystallographic Orientation in Ionic Liquids. ChemElectroChem, 2022, 9, .	3.4	4
2	Cationâ€Structure Effects on Zinc Electrodeposition and Crystallographic Orientation in Ionic Liquids. ChemElectroChem, 2022, 9, .	3.4	0
3	A phosphonium ylide as a visible light organophotoredox catalyst. Chemical Communications, 2021, 57, 3591-3594.	4.1	9
4	Ligand Exchange Conduction of Lithium Ion in a Pentaglyme-Lithium Bis(trifluoromethylsulfonyl)amide Super-Concentrated Electrolyte. Journal of the Electrochemical Society, 2021, 168, 016506.	2.9	7
5	Intercalation/deintercalation of solvated Mg ²⁺ into/from graphite interlayers. Physical Chemistry Chemical Physics, 2021, 23, 16981-16988.	2.8	3
6	Fabrication of Roughened Electrodeposited Copper Coating on Steel for Dissimilar Joining of Steel and Thermoplastic Resin. Metals, 2021, 11, 591.	2.3	4
7	Dopant Effect on Lithiation/Delithiation of Highly Crystalline Silicon Synthesized Using the Czochralski Process. ACS Applied Energy Materials, 2021, 4, 7922-7929.	5.1	8
8	Glyme-Lithium Bis(trifluoromethylsulfonyl)amide Super-concentrated Electrolytes: Salt Addition to Solvate Ionic Liquids Lowers Ionicity but Liberates Lithium Ions. Journal of the Electrochemical Society, 2021, 168, 090521.	2.9	3
9	Superior electrical contact characteristics of Ag/CNT composite films formed in a cyanide-free plating bath and tested against corrosion by H2S gas. Materials Letters, 2021, 303, 130504.	2.6	5
10	Fabrication of Metal/Carbon Nanotube Composites by Electrochemical Deposition. Electrochem, 2021, 2, 563-589.	3.3	6
11	Dissimilar Material Joining between Steel and Resin using Roughened Plating Films. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2021, 72, 674-678.	0.2	0
12	Dispersion of multiwalled carbon nanotubes into a diglyme solution, electrodeposition of aluminum-based composite, and improvement of hardness. Journal of Alloys and Compounds, 2020, 816, 152585.	5.5	7
13	Excellent bonding strength between steel and thermoplastic resin using roughened electrodeposited Ni/CNT composite layer without adhesives. Materials Letters, 2020, 263, 127241.	2.6	12
14	Multi-layered copper foil reinforced by co-deposition of single-walled carbon nanotube based on electroplating technique. Materials Letters, 2020, 261, 126993.	2.6	5
15	Superior Durability of Dissimilar Material Joint between Steel and Thermoplastic Resin with Roughened Electrodeposited Nickel Interlayer. Advanced Engineering Materials, 2020, 22, 2000739.	3.5	3
16	Kinetics Study and Degradation Analysis through Raman Spectroscopy of Graphite as a Negative-Electrode Material for Potassium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 13008-13016.	3.1	24
17	Fabrication of CNT/Cu Composite Yarn via Single-Step Electrodeposition. Journal of the Electrochemical Society, 2020, 167, 102509.	2.9	6
18	Piperidinium-Based Ionic Liquids as an Electrolyte Solvent for Li-Ion Batteries: Effect of Number and Position of Oxygen Atom in Cation Side Chain on Electrolyte Property. Journal of the Electrochemical Society, 2020, 167, 070516.	2.9	19

#	Article	IF	CITATIONS
19	Electrodeposition of Ag/CNT Composite Films from Iodide Plating Baths. Journal of the Electrochemical Society, 2020, 167, 122515.	2.9	12
20	Dissimilar Materials Joining between Steel and Resin by Roughened Plating Method. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2020, 89, 125-128.	0.1	0
21	Development of Ag/CNT Films As Electrical Connectors Using a Cyanide-Free Electroplating Bath. ECS Meeting Abstracts, 2020, MA2020-02, 3581-3581.	0.0	Ο
22	Electrodeposited Cu/MWCNT composite-film: a potential current collector of silicon-based negative-electrodes for Li-lon batteries. RSC Advances, 2019, 9, 21939-21945.	3.6	12
23	Communication—Alkyl-Chain-Length Dependence of Quaternary Ammonium Cation on Zn Deposition Morphology in Alkaline-Based Electrolytes. Journal of the Electrochemical Society, 2019, 166, A2242-A2244.	2.9	4
24	Morphology control of zinc electrodeposition by surfactant addition for alkaline-based rechargeable batteries. Physical Chemistry Chemical Physics, 2019, 21, 7045-7052.	2.8	59
25	Effect of Film-Forming Additive in Ionic Liquid Electrolyte on Electrochemical Performance of Si Negative-Electrode for LIBs. Journal of the Electrochemical Society, 2019, 166, A268-A276.	2.9	19
26	Infulence of Alkyl-Chain-Length of Quaternary Ammonium Cation on Zn Deposition Morphology in Alkaline-Based Electrolyte. ECS Meeting Abstracts, 2019, , .	0.0	0
27	Morphology Control of Zinc Electrodeposition By Surfactant Addition for Alkaline-Based Rechargeable Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
28	Intercalation/De-Intercalation Behavior of Li-Ion Encapsulated By 12-Crown-4-Ether into Graphite Electrode. ECS Meeting Abstracts, 2019, , .	0.0	0
29	Tin Oxides As a Negative Electrode Material for Potassium-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	Ο
30	Triethylamine Enables Catalytic Generation of Oxidopyrylium Ylides for [5+2] Cycloadditions with Alkenes: An Efficient Entry to 8â€Oxabicyclo[3.2.1]octane Frameworks. Advanced Synthesis and Catalysis, 2018, 360, 2377-2381.	4.3	14
31	Electrochemical preparation of free-standing carbon-nanotube/Sn composite paper. Materials Letters, 2018, 220, 182-185.	2.6	4
32	Effects of the ether oxygen atom in alkyl side chains on the physical properties of piperidinium ionic liquids. Faraday Discussions, 2018, 206, 523-534.	3.2	15
33	Suppressing the effect of lithium dendritic growth by the addition of magnesium bis(trifluoromethanesulfonyl)amide. Physical Chemistry Chemical Physics, 2018, 20, 1127-1133.	2.8	13
34	Communication—Intercalation/De-Intercalation Behavior of Li-Ion Encapsulated by 12-Crown-4-Ether into Graphite Electrode. Journal of the Electrochemical Society, 2018, 165, A3212-A3214.	2.9	5
35	Tin Oxides as a Negative Electrode Material for Potassium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 6865-6870.	5.1	45
36	Electrochemical lithiation and delithiation properties of ceria–coated silicon electrodes. Journal of Alloys and Compounds, 2017, 695, 2035-2039.	5.5	9

#	Article	IF	CITATIONS
37	Communication—Micro-Scale Columnar Architecture Composed of Copper Nano Sheets by Electrodeposition Technique. Journal of the Electrochemical Society, 2017, 164, D72-D74.	2.9	4
38	Li-insertion/extraction properties of three-dimensional Sn electrode prepared by facile electrodeposition method. Journal of Applied Electrochemistry, 2017, 47, 727-734.	2.9	8
39	Charge–Discharge Properties of a Sn ₄ P ₃ Negative Electrode in Ionic Liquid Electrolyte for Na-Ion Batteries. ACS Energy Letters, 2017, 2, 1139-1143.	17.4	101
40	Electrochemical Na-Insertion/Extraction Property of Ni-Coated Black Phosphorus Prepared by an Electroless Deposition Method. ACS Omega, 2017, 2, 4306-4315.	3.5	39
41	Design of Roughened Current Collector by Bottom-up Approach Using the Electroplating Technique: Charge–Discharge Performance of a Sn Negative-Electrode for Na-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 27285-27294.	3.1	14
42	Influence of the structure of the anion in an ionic liquid electrolyte on the electrochemical performance of a silicon negative electrode for a lithium-ion battery. Journal of Power Sources, 2017, 338, 103-107.	7.8	40
43	Fabrication of Copper/Single-Walled Carbon Nanotube Composites by Electrodeposition Using Free-Standing Nanotube Film. Journal of the Electrochemical Society, 2017, 164, D922-D929.	2.9	9
44	Fabrication of Three-Dimensional (3D) Copper/Carbon Nanotube Composite Film by One-Step Electrodeposition. Journal of the Electrochemical Society, 2016, 163, D774-D779.	2.9	8
45	Fabrication of copper/single-walled carbon nanotube composite film with homogeneously dispersed nanotubes by electroless deposition. Materials Today Communications, 2016, 7, 101-107.	1.9	29
46	Niobium-doped titanium oxide anode and ionic liquid electrolyte for a safe sodium-ion battery. Journal of Power Sources, 2016, 329, 428-431.	7.8	42
47	Effect of Phosphorus-Doping on Electrochemical Performance of Silicon Negative Electrodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 7125-7132.	8.0	93
48	Communication—Fabrication of a Uniformly Tin-Coated Three-Dimensional Copper Nanostructured Architecture by Electrodeposition. Journal of the Electrochemical Society, 2016, 163, D54-D56.	2.9	4
49	Functional ionic liquids for enhancement of Li-ion transfer: the effect of cation structure on the charge–discharge performance of the Li ₄ Ti ₅ O ₁₂ electrode. Physical Chemistry Chemical Physics, 2016, 18, 5139-5147.	2.8	32
50	Fabrication of Tin-Plated Three-Dimensional Copper Nanostructure Using Electroless Plating and Its Anode Performance in Lithium-Ion Battery. ECS Meeting Abstracts, 2016, , .	0.0	0
51	Fabrication of an MWCNT-Reinforced Tin Anode for Use in Lithium Ion Batteries By Electrodeposition in Sulfuric Acid. ECS Meeting Abstracts, 2016, , .	0.0	0
52	Construction of Lithium-Ion Battery Tin Anode Utilizing Cu/CNT Composite Plating Method. ECS Meeting Abstracts, 2016, , .	0.0	0
53	Fabrication and Electrochemical Evaluation of Tin Plated Three-Dimensional Copper Nanostructured Anode for Lithium Ion Battery. ECS Meeting Abstracts, 2016, , .	0.0	0
54	Porous Silicon Nanoparticles Prepared By an Alkaline Process As an Anode for Use in Lithium Ion Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0

#	Article	IF	CITATIONS
55	Electrochemical Na-insertion/Extraction Properties of Sn–P Anodes. Electrochemistry, 2015, 83, 810-812.	1.4	26
56	Analysis of the Deterioration Mechanism of Si Electrode as a Li-Ion Battery Anode Using Raman Microspectroscopy. Journal of Physical Chemistry C, 2015, 119, 2975-2982.	3.1	56
57	Fabrication of Copper/Multiwalled Carbon Nanotube Composites Containing Different Sized Nanotubes by Electroless Deposition. Journal of the Electrochemical Society, 2015, 162, D68-D73.	2.9	16
58	Nb-Doped Rutile TiO ₂ : a Potential Anode Material for Na-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 6567-6573.	8.0	227
59	Electrochemical behavior of SiO as an anode material for Na-ion battery. Journal of Alloys and Compounds, 2015, 640, 440-443.	5.5	34
60	Effect of Cation Structure of Ionic Liquids on Anode Properties of Si Electrodes for LIB. Journal of the Electrochemical Society, 2014, 161, A1765-A1771.	2.9	42
61	Electroless deposition and evaluation of Cu/multiwalled carbon nanotube composite films on acrylonitrile butadiene styrene resin. Surface and Coatings Technology, 2014, 254, 224-229.	4.8	14
62	Electroless Deposition of Cu/Multiwalled Carbon Nanotube Composite Films with Improved Frictional Properties. ECS Journal of Solid State Science and Technology, 2014, 3, P201-P206.	1.8	9
63	Electrochemical Na-insertion/extraction properties of SnO thick-film electrodes prepared by gas-deposition. Journal of Power Sources, 2014, 248, 378-382.	7.8	67
64	Applicability of ionic liquid electrolytes to LaSi2/Si composite thick-film anodes in Li-ion battery. Journal of Power Sources, 2013, 235, 29-35.	7.8	48
65	Frictional and wear properties of cobalt/multiwalled carbon nanotube composite films formed by electrodeposition. Surface and Coatings Technology, 2013, 235, 204-211.	4.8	18
66	TiO2/Si composites synthesized by sol–gel method and their improved electrode performance as Li-ion battery anodes. Electrochimica Acta, 2013, 111, 575-580.	5.2	42
67	Field emission properties of Cu/multiwalled carbon nanotube composite films fabricated by an electrodeposition technique. Journal of Applied Electrochemistry, 2013, 43, 399-405.	2.9	7
68	Fabrication of Co-W Alloy/Multiwalled Carbon Nanotube Composite Films by Electrodeposition for Improved Frictional Properties. ECS Journal of Solid State Science and Technology, 2013, 2, M39-M43.	1.8	10
69	Mechanism for Codeposition of Multiwalled Carbon Nanotubes with Copper from Acid Copper Sulfate Bath. Journal of the Electrochemical Society, 2013, 160, D380-D385.	2.9	16
70	Fabrication of various electroless Ni–P alloy/multiwalled carbon nanotube composite films on an acrylonitrile butadiene styrene resin. Surface and Coatings Technology, 2011, 205, 3175-3181.	4.8	25
71	Cu/Multiwalled Carbon Nanotube Composite Films Fabricated by Pulse-Reverse Electrodeposition. Journal of the Electrochemical Society, 2011, 158, D49.	2.9	30
72	Electroless Deposition of Silver on Multiwalled Carbon Nanotubes Using lodide Bath. Journal of the Electrochemical Society, 2011, 158, D506.	2.9	12

#	Article	IF	CITATIONS
73	Electric Contact Characteristic under Low Load of Silver–Carbon Nanotube Composite Plating Film Corroded Using H ₂ S Gas. Applied Physics Express, 2010, 3, 065801.	2.4	11
74	Electrodeposition of Ni–P Alloy–Multiwalled Carbon Nanotube Composite Films. Journal of the Electrochemical Society, 2010, 157, D50.	2.9	25
75	Cu–MWCNT Composite Films Fabricated by Electrodeposition. Journal of the Electrochemical Society, 2010, 157, D147.	2.9	79
76	Effects of Additives on Cu-MWCNT Composite Plating Films. Journal of the Electrochemical Society, 2010, 157, D127.	2.9	29
77	Phosphorus Particle Composite Plating with Ni–P Alloy Matrix. Journal of the Electrochemical Society, 2009, 156, D283.	2.9	4
78	Inter-collisional cutting of multi-walled carbon nanotubes by high-speed agitation. Journal of Physics and Chemistry of Solids, 2008, 69, 2481-2486.	4.0	24
79	Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films. Materials Letters, 2008, 62, 3545-3548.	2.6	98
80	Metal-Fixed Multiwalled Carbon Nanotube Patterned Emitters Using Photolithography and Electrodeposition Technique. Electrochemical and Solid-State Letters, 2008, 11, D72.	2.2	12
81	Low-Internal-Stress Nickel Multiwalled Carbon Nanotube Composite Electrodeposited from a Sulfamate Bath. Journal of the Electrochemical Society, 2007, 154, D530.	2.9	29
82	Effects of Drainage Conditions on the Shear Strength of Unsaturated Soil. , 2006, , 1223.		2
83	Suction and its Effects on Shear Strength of Unsaturated Undisturbed Samples of a Volcanic Pumiceous Soil. , 2006, , 1235.		1
84	Various carbon nanofiber–copper composite films prepared by electrodeposition. Electrochemistry Communications, 2005, 7, 19-22.	4.7	56
85	Carbon Nanofiber-Copper Composites Fabricated by Electroplating. Electrochemical and Solid-State Letters, 2004, 7, C25.	2.2	40
86	Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon, 2004, 42, 641-644.	10.3	142
87	Carbon nanofiber–copper composite powder prepared by electrodeposition. Electrochemistry Communications, 2003, 5, 797-799.	4.7	107