Yan Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7700331/publications.pdf

Version: 2024-02-01

38 papers	1,170 citations	20 h-index	395702 33 g-index
39	39	39	1616
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The management of diabetes mellitus by mangiferin: advances and prospects. Nanoscale, 2022, 14, 2119-2135.	5.6	22
2	Targeted Polymeric Nanoparticles Based on Mangiferin for Enhanced Protection of Pancreatic \hat{l}^2 -Cells and Type 1 Diabetes Mellitus Efficacy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11092-11103.	8.0	15
3	Emerging function and clinical significance of extracellular vesicle noncoding RNAs in lung cancer. Molecular Therapy - Oncolytics, 2022, 24, 814-833.	4.4	10
4	Nanodrug delivery systems and cancer stem cells: From delivery carriers to treatment. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112701.	5.0	6
5	<i>In situ</i>) injection of dual-delivery PEG based MMP-2 sensitive hydrogels for enhanced tumor penetration and chemo-immune combination therapy. Nanoscale, 2021, 13, 9577-9589.	5 . 6	35
6	Multifunctional nanoplatforms as cascade-responsive drug-delivery carriers for effective synergistic chemo-photodynamic cancer treatment. Journal of Nanobiotechnology, 2021, 19, 140.	9.1	14
7	Reduction-sensitive polymeric micelles as amplifying oxidative stress vehicles for enhanced antitumor therapy. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111733.	5.0	19
8	Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nanotechnology, 2021, 12, .	3.7	43
9	Nuclear-targeted nanocarriers based on pH-sensitive amphiphiles for enhanced GNA002 delivery and chemotherapy. Nanoscale, 2021, 13, 4774-4784.	5 . 6	10
10	Tetrahedral DNA nanostructures for effective treatment of cancer: advances and prospects. Journal of Nanobiotechnology, 2021, 19, 412.	9.1	43
11	Tumor Microenvironment-triggered Nanosystems as dual-relief Tumor Hypoxia Immunomodulators for enhanced Phototherapy. Theranostics, 2020, 10, 9132-9152.	10.0	67
12	Enzyme/pH-triggered anticancer drug delivery of chondroitin sulfate modified doxorubicin nanocrystal. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 1114-1124.	2.8	16
13	Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications. Nanoscale, 2020, 12, 15512-15527.	5. 6	58
14	Targeted nanocarriers based on iodinated-cyanine dyes as immunomodulators for synergistic phototherapy. Nanoscale, 2020, 12, 11008-11025.	5.6	35
15	The effect of π-Conjugation on the self-assembly of micelles and controlled cargo release. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 525-532.	2.8	10
16	Novel polymeric micelles as enzyme-sensitive nuclear-targeted dual-functional drug delivery vehicles for enhanced 9-nitro-20(<i>S</i>)-camptothecin delivery and antitumor efficacy. Nanoscale, 2020, 12, 5380-5396.	5.6	43
17	Self-Assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Delivery, 2020, 27, 200-215.	5.7	34
18	<p>NIR-guided dendritic nanoplatform for improving antitumor efficacy by combining chemo-phototherapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 4931-4947.	6.7	25

#	Article	IF	Citations
19	Effect of canonical NF-κB signaling pathway on the differentiation of rat dental epithelial stem cells. Stem Cell Research and Therapy, 2019, 10, 139.	5.5	8
20	Intracellular tracking of drug release from pH-sensitive polymeric nanoparticles via FRET for synergistic chemo-photodynamic therapy. Journal of Nanobiotechnology, 2019, 17, 113.	9.1	28
21	Integrated Metalloproteinase, pH and Glutathione Responsive Prodrug-Based Nanomedicine for Efficient Target Chemotherapy. Journal of Biomedical Nanotechnology, 2019, 15, 1673-1687.	1.1	19
22	A triple modality BSA-coated dendritic nanoplatform for NIR imaging, enhanced tumor penetration and anticancer therapy. Nanoscale, 2018, 10, 9021-9037.	5.6	34
23	Synthesis, characterization, and property of biodegradable PEG-PCL-PLA terpolymers with miktoarm star and triblock architectures as drug carriers. Journal of Biomaterials Applications, 2018, 32, 1139-1152.	2.4	11
24	ECM based injectable thermo-sensitive hydrogel on the recovery of injured cartilage induced by osteoarthritis. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 152-160.	2.8	39
25	Fluorescence Resonance Energy Transfer Visualization of Molecular Delivery from Polymeric Micelles. Journal of Biomedical Nanotechnology, 2018, 14, 1308-1316.	1.1	17
26	Effective combination therapy of percutaneous ethanol injection and chemotherapy based on injectable low molecular weight gels. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 683-693.	2.8	6
27	Viral Capsids Mimicking Based on pH-Sensitive Biodegradable Polymeric Micelles for Efficient Anticancer Drug Delivery. Journal of Biomedical Nanotechnology, 2018, 14, 1409-1419.	1.1	15
28	A ROS-responsive polymeric micelle with a π-conjugated thioketal moiety for enhanced drug loading and efficient drug delivery. Organic and Biomolecular Chemistry, 2017, 15, 9176-9185.	2.8	57
29	A reactive oxygen species (ROS)-responsive low molecular weight gel co-loaded with doxorubicin and Zn(<scp>ii</scp>) phthalocyanine tetrasulfonic acid for combined chemo-photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 9157-9164.	5 . 8	50
30	Substitution of Percutaneous Ethanol Injection with a Low Molecular Weight Peptide Gel Mimicking Chemoembolization for Cancer Therapy. Nanotheranostics, 2017, 1, 313-325.	5.2	8
31	Near infrared light responsive hybrid nanoparticles for synergistic therapy. Biomaterials, 2016, 100, 76-90.	11.4	51
32	In situ injection of phenylboronic acid based low molecular weight gels for efficient chemotherapy. Biomaterials, 2016, 105, 1-11.	11.4	53
33	Inhibition of Ape1 Redox Activity Promotes Odonto/osteogenic Differentiation of Dental Papilla Cells. Scientific Reports, 2015, 5, 17483.	3.3	15
34	A facile strategy to generate polymeric nanoparticles for synergistic chemo-photodynamic therapy. Chemical Communications, 2015, 51, 4271-4274.	4.1	61
35	Chain length effect on drug delivery of chrysin modified mPEG–PCL micelles. RSC Advances, 2015, 5, 59014-59021.	3.6	21
36	Terminal modification of polymeric micelles with π-conjugated moieties for efficient anticancer drug delivery. Biomaterials, 2015, 71, 1-10.	11.4	125

#	Article	IF	CITATIONS
37	Polymeric micelles with small lipophilic moieties for drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 116, 627-632.	5.0	12
38	Novel polymeric micelles with cinnamic acid as lipophilic moiety for 9-Nitro-20(S)-camptothecin delivery. Materials Letters, 2013, 97, 4-7.	2.6	15