

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7700289/publications.pdf Version: 2024-02-01

		623734	552781
28	1,013	14	26
papers	citations	h-index	g-index
28	28	28	1388
all docs	docs citations	times ranked	citing authors

HIII YE

#	Article	IF	CITATIONS
1	Plasmonic computing of spatial differentiation. Nature Communications, 2017, 8, 15391.	12.8	292
2	Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high- <i>lµ</i> ″ metals. Applied Physics Letters, 2017, 110, .	3.3	128
3	Germanium epitaxy on silicon. Science and Technology of Advanced Materials, 2014, 15, 024601.	6.1	97
4	Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films. Advanced Optical Materials, 2016, 4, 480-486.	7.3	94
5	ITO/Au/ITO Sandwich Structure for Near-Infrared Plasmonics. ACS Applied Materials & Interfaces, 2014, 6, 15743-15752.	8.0	58
6	Optical constants acquisition and phase change properties of Ge ₂ Sb ₂ Te ₅ thin films based on spectroscopy. RSC Advances, 2018, 8, 21040-21046.	3.6	48
7	Transparent Conductive Oxides and Their Applications in Near Infrared Plasmonics. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1700794.	1.8	41
8	Tip-Enhanced Photoinduced Electron Transfer and Ionization on Vertical Silicon Nanowires. ACS Applied Materials & Interfaces, 2018, 10, 14389-14398.	8.0	39
9	ITO–TiN–ITO Sandwiches for Near-Infrared Plasmonic Materials. ACS Applied Materials & Interfaces, 2018, 10, 14886-14893.	8.0	30
10	Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region. Journal of Physics Condensed Matter, 2016, 28, 224009.	1.8	23
11	Large optical nonlinearity of ITO/Ag/ITO sandwiches based on Z-scan measurement. Optics Letters, 2019, 44, 2490.	3.3	23
12	Heteroepitaxy of Ge on Si(001) with pits and windows transferred from free-standing porous alumina mask. Nanotechnology, 2013, 24, 185302.	2.6	17
13	Effect of Thickness on the Optical and Electrical Properties of ITO/Au/ITO Sandwich Structures. ACS Applied Materials & Interfaces, 2020, 12, 13437-13446.	8.0	17
14	Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films. Science and Technology of Advanced Materials, 2018, 19, 174-184.	6.1	16
15	Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting. Scientific Reports, 2016, 6, 29195.	3.3	14
16	Plasmonic-enhanced targeted nanohealing of metallic nanostructures. Applied Physics Letters, 2018, 112, .	3.3	14
17	Optimization of hetero-epitaxial growth for the threading dislocation density reduction of germanium epilayers. Journal of Crystal Growth, 2018, 488, 8-15.	1.5	10
18	Direct Observations of Surface Plasmon Polaritons in Highly Conductive Organic Thin Film. ACS Applied Materials & Interfaces, 2019, 11, 39132-39142.	8.0	10

Hui Ye

#	Article	IF	CITATIONS
19	High-bandwidth Si/In2O3 hybrid plasmonic waveguide modulator. APL Photonics, 2022, 7, .	5.7	10
20	CMOS-Compatible Antimony-Doped Germanium Epilayers for Mid-Infrared Low-Loss High-Plasma-Frequency Plasmonics. ACS Applied Materials & Interfaces, 2019, 11, 19647-19653.	8.0	9
21	Study on epsilon crossover wavelength tuning of heavily doped germanium-on-silicon in mid-infrared range. Optics Express, 2019, 27, 33724.	3.4	8
22	Permittivity acquisition of plasmonic materials at epsilon near zero wavelengths. Journal of Applied Physics, 2021, 129, .	2.5	7
23	Integrating two epsilon-near-zero materials into planar multilayer metamaterial structure for broadband near-perfect mid-IR absorption. Optical Materials Express, 2022, 12, 1374.	3.0	3
24	Sub-bandgap light absorption enhancement in germanium films through Berreman mode weak coupling to a microcavity mode. Optics Express, 2021, 29, 44189.	3.4	2
25	Narrowband Absorbers: Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films (Advanced Optical Materials 3/2016). Advanced Optical Materials, 2016, 4, 488-488.	7.3	1
26	Fabrication and optimization of ITO-Ag co-sputtered nanocomposite films as plasmonic materials in the near-infrared region. , 2017, , .		1
27	Etching damage induced performance degradation in spin transfer torque magnetic random access memory fabrication. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, 052210.	1.2	1
28	Simulation for plasmonic light-emission enhancement with metal nanoparticles in visible range and near-infrared range. , 2014, , .		0