Thomas Riedl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7700187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure manipulation by laser-surface remelting of a full-Heusler compound to enhance thermoelectric properties. Acta Materialia, 2022, 223, 117501.	7.9	7
2	Sizeâ€Dependent Strain Relaxation in InAs Quantum Dots on Top of GaAs(111)A Nanopillars. Advanced Materials Interfaces, 2022, 9, .	3.7	1
3	Automated SEM Image Analysis of the Sphere Diameter, Sphere-Sphere Separation, and Opening Size Distributions of Nanosphere Lithography Masks. Microscopy and Microanalysis, 2022, 28, 185-195.	0.4	1
4	Perovskite–organic tandem solar cells with indium oxide interconnect. Nature, 2022, 604, 280-286.	27.8	181
5	Direct patterning of methylammonium lead bromide perovskites by thermal imprint. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	3
6	Band-Gap Tuning in All-Inorganic CsPb <i>_x</i> Sn _{1–<i>x</i>} Br ₃ Perovskites. ACS Applied Materials & Interfaces, 2021, 13, 4203-4210.	8.0	24
7	Large-Grain Double Cation Perovskites with 18 μs Lifetime and High Luminescence Yield for Efficient Inverted Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 1045-1054.	17.4	54
8	Upgrading of methylammonium lead halide perovskite layers by thermal imprint. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	9
9	Reductive Coupling Synthesis of a Soluble Poly(9,10-anthrylene ethynylene). Organic Materials, 2021, 03, 184-190.	2.0	0
10	Bifacial Color-Tunable Electroluminescent Devices. ACS Applied Materials & Interfaces, 2021, 13, 28514-28520.	8.0	8
11	Ordered arrays of Si nanopillars with alternating diameters fabricated by nanosphere lithography and metal-assisted chemical etching. Materials Science in Semiconductor Processing, 2021, 128, 105746.	4.0	8
12	The Optical Origin of Nearâ€Unity External Quantum Efficiencies in Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100371.	5.8	14
13	Relevance of processing parameters for grain growth of metal halide perovskites with nanoimprint. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	5
14	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	5.1	102
15	Atomic Layer Deposition of Functional Layers in Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900332.	5.8	46
16	Influence of lens aberrations, specimen thickness and tilt on differential phase contrast STEM images. Ultramicroscopy, 2020, 219, 113118.	1.9	10
17	A carbene stabilized precursor for the spatial atomic layer deposition of copper thin films. Chemical Communications, 2020, 56, 13752-13755.	4.1	12
18	Halide Segregation versus Interfacial Recombination in Bromide-Rich Wide-Gap Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2728-2736.	17.4	114

#	Article	IF	CITATIONS
19	Amorphous Indium-Gallium-Zinc-Oxide TFTs Patterned by Self-Aligned Photolithography Overcoming the GHz Threshold. IEEE Electron Device Letters, 2020, 41, 1786-1789.	3.9	14
20	Thermal properties of metal-halide perovskites. Journal of Materials Chemistry C, 2020, 8, 14289-14311.	5.5	74
21	InAs heteroepitaxy on nanopillar-patterned GaAs (111)A. Journal of Crystal Growth, 2020, 537, 125597.	1.5	2
22	Thermal properties of CsPbCl3 thin films across phase transitions. JPhys Materials, 2020, 3, 024004.	4.2	15
23	Impermeable Charge Transport Layers Enable Aqueous Processing on Top of Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903897.	19.5	30
24	Nonlinear refraction in CH ₃ NH ₃ PbBr ₃ single crystals. Optics Letters, 2020, 45, 2431.	3.3	19
25	Nonlinear optical properties of metal halide perovskite single crystals. , 2020, , .		0
26	Roomâ€Temperature Stimulated Emission and Lasing in Recrystallized Cesium Lead Bromide Perovskite Thin Films. Advanced Materials, 2019, 31, e1903717.	21.0	148
27	Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue. ACS Applied Materials & Interfaces, 2019, 11, 40172-40179.	8.0	39
28	Evaluation of the Beyond- <inline-formula> <tex-math notation="LaTeX">\$f_T\$ </tex-math> </inline-formula> Operation of an IGZO TFT-Based RF Self-Mixing Circuit. IEEE Microwave and Wireless Components Letters, 2019, 29, 119-121.	3.2	5
29	Solutionâ€Processed Tin Oxideâ€PEDOT:PSS Interconnecting Layers for Efficient Inverted and Conventional Tandem Polymer Solar Cells. Solar Rrl, 2019, 3, 1800366.	5.8	22
30	Direct Arylation Polycondensation (DAP) Synthesis of Alternating Quaterthiopheneâ^'Benzothiadiazole Copolymers for Organic Solar Cell Applications. ChemPlusChem, 2019, 84, 1249-1252.	2.8	6
31	Simultaneous Mapping of Thermal Conductivity, Thermal Diffusivity, and Volumetric Heat Capacity of Halide Perovskite Thin Films: A Novel Nanoscopic Thermal Measurement Technique. Journal of Physical Chemistry Letters, 2019, 10, 3019-3023.	4.6	32
32	A comparative study demonstrates strong size tunability of carrier–phonon coupling in CdSe-based 2D and 0D nanocrystals. Nanoscale, 2019, 11, 3958-3967.	5.6	24
33	Metal-Oxide Interface Materials for Organic and Perovskite Solar Cells. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 61-104.	0.1	2
34	Adsorption Behavior of Lysozyme at Titanium Oxide–Water Interfaces. Langmuir, 2018, 34, 5403-5408.	3.5	6
35	Atmospheric pressure plasma enhanced spatial atomic layer deposition of SnOx as conductive gas diffusion barrier. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	29
36	Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability. ACS Applied Materials & Interfaces, 2018, 10, 6006-6013.	8.0	65

#	Article	IF	CITATIONS
37	Distributed Feedback Lasers Based on MAPbBr ₃ . Advanced Materials Technologies, 2018, 3, 1700253.	5.8	77
38	Allâ€Oxide MoO <i>_x</i> /SnO <i>_x</i> Charge Recombination Interconnects for Inverted Organic Tandem Solar Cells. Advanced Energy Materials, 2018, 8, 1702533.	19.5	30
39	Ein Nâ€heterocyclischer Carbenkomplex des Silbers für die plasmaunterstützte rämlich getrennte Atomlagenabscheidung dünner Silberschichten bei Atmosphäendruck. Angewandte Chemie, 2018, 130, 16458-16462.	2.0	2
40	An Nâ€Heterocyclic Carbene Based Silver Precursor for Plasmaâ€Enhanced Spatial Atomic Layer Deposition of Silver Thin Films at Atmospheric Pressure. Angewandte Chemie - International Edition, 2018, 57, 16224-16227.	13.8	22
41	Stark effect of hybrid charge transfer states at planar ZnO/organic interfaces. Physical Review B, 2018, 98, .	3.2	12
42	Nanometer-Thick Conjugated Microporous Polymer Films for Selective and Sensitive Vapor-Phase TNT Detection. ACS Applied Nano Materials, 2018, 1, 6483-6492.	5.0	32
43	Impact of Shell Growth on Recombination Dynamics and Exciton–Phonon Interaction in CdSe–CdS Core–Shell Nanoplatelets. ACS Nano, 2018, 12, 9476-9483.	14.6	39
44	Metal Oxide-Based Charge Extraction and Recombination Layers for Organic Solar Cells. , 2018, , 159-181.		2
45	Photonic Nanostructures Patterned by Thermal Nanoimprint Directly into Organoâ€Metal Halide Perovskites. Advanced Materials, 2017, 29, 1605003.	21.0	170
46	Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nature Communications, 2017, 8, 13938.	12.8	259
47	2D Heterostructures Derived from MoS ₂ â€Templated, Cobaltâ€Containing Conjugated Microporous Polymer Sandwiches for the Oxygen Reduction Reaction and Electrochemical Energy Storage. ChemElectroChem, 2017, 4, 709-715.	3.4	30
48	Strain Compensation in Single ZnSe/CdSe Quantum Wells: Analytical Model and Experimental Evidence. ACS Applied Materials & Interfaces, 2017, 9, 8371-8377.	8.0	3
49	Gas Diffusion Barriers Prepared by Spatial Atmospheric Pressure Plasma Enhanced ALD. ACS Applied Materials & Interfaces, 2017, 9, 4171-4176.	8.0	41
50	Indiumâ€Free Perovskite Solar Cells Enabled by Impermeable Tinâ€Oxide Electron Extraction Layers. Advanced Materials, 2017, 29, 1606656.	21.0	88
51	Selfâ€Encapsulating Thermostable and Airâ€Resilient Semitransparent Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602599.	19.5	129
52	Thermal nanoimprint to improve the morphology of MAPbX3 (MA = methylammonium, X = l c of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35,	or B <u>r)</u> Journ	nal ₂₀
53	Thermal Conductivity of Methylammonium Lead Halide Perovskite Single Crystals and Thin Films: A Comparative Study. Journal of Physical Chemistry C, 2017, 121, 28306-28311.	3.1	93
54	From diffusive in-plane to ballistic out-of-plane heat transport in thin non-crystalline films.	1.7	5

Microelectronics Reliability, 2017, 76-77, 222-226.

#	Article	IF	CITATIONS
55	Nitrogen-doped porous carbon/graphene nanosheets derived from two-dimensional conjugated microporous polymer sandwiches with promising capacitive performance. Materials Chemistry Frontiers, 2017, 1, 278-285.	5.9	62
56	A novel label-free cell-based assay technology using biolayer interferometry. Biosensors and Bioelectronics, 2017, 87, 388-395.	10.1	31
57	Program FFlexCom $\hat{a} \in$ " High frequency flexible bendable electronics for wireless communication systems. , 2017, , .		12
58	Minor defects of the luminal integrity in arterial introducer eSheaths after transcatheter aortic valve implantation. PLoS ONE, 2017, 12, e0176893.	2.5	0
59	Controlled Mechanical Cracking of Metal Films Deposited on Polydimethylsiloxane (PDMS). Nanomaterials, 2016, 6, 168.	4.1	16
60	Avoiding Photoinduced Shunts in Organic Solar Cells by the Use of Tin Oxide (SnO _x) as Electron Extraction Material Instead of ZnO. Advanced Energy Materials, 2016, 6, 1600347.	19.5	63
61	Impact of Film Stoichiometry on the Ionization Energy and Electronic Structure of CH ₃ NH ₃ PbI ₃ Perovskites. Advanced Materials, 2016, 28, 553-559.	21.0	148
62	Gas permeation barriers deposited by atmospheric pressure plasma enhanced atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	2.1	18
63	From diffusive to ballistic Stefan–Boltzmann heat transport in thin non-crystalline films. RSC Advances, 2016, 6, 94193-94199.	3.6	16
64	Metal-nanostructures – a modern and powerful platform to create transparent electrodes for thin-film photovoltaics. Journal of Materials Chemistry A, 2016, 4, 14481-14508.	10.3	77
65	Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks. Scientific Reports, 2016, 6, 29118.	3.3	57
66	Stress Management in Thin-Film Gas-Permeation Barriers. ACS Applied Materials & Interfaces, 2016, 8, 4056-4061.	8.0	39
67	Thermal microscopy of electronic materials. Materials Science in Semiconductor Processing, 2016, 43, 163-176.	4.0	25
68	Experimental results with HF underwater acoustic modem for high bandwidth applications. , 2015, , .		11
69	Highly Robust Transparent and Conductive Gas Diffusion Barriers Based on Tin Oxide. Advanced Materials, 2015, 27, 5961-5967.	21.0	84
70	Tin Oxide (SnO <i>_x</i>) as Universal "Lightâ€Soaking―Free Electron Extraction Material for Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1500277.	19.5	82
71	Straightforward Generation of Pillared, Microporous Graphene Frameworks for Use in Supercapacitors. Advanced Materials, 2015, 27, 6714-6721.	21.0	137
72	Facile Preparation of Highâ€Performance Elastically Stretchable Interconnects. Advanced Materials, 2015, 27, 3755-3759.	21.0	34

#	Article	IF	CITATIONS
73	Future prospects of organic and perovskite based solid-state lasers. , 2015, , .		1
74	Comparison of OFDM and single-carrier schemes for Doppler Tolerant Acoustic Communications. , 2015, , .		8
75	Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells. Scientific Reports, 2015, 5, 7765.	3.3	39
76	Deep and Shallow TiO2 Gap States on Cleaved Anatase Single Crystal (101) Surfaces, Nanocrystalline Anatase Films, and ALD Titania Ante and Post Annealing. Journal of Physical Chemistry C, 2015, 119, 9890-9898.	3.1	48
77	Transfer printing of electrodes for organic devices: nanoscale versus macroscale continuity. Applied Physics A: Materials Science and Processing, 2015, 120, 503-508.	2.3	4
78	Transparent conductive thin-film encapsulation layers (Presentation Recording). , 2015, , .		0
79	Self-organized fabrication of periodic arrays of vertical, ultra-thin nanopillars on GaAs surfaces. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2871-2877.	1.8	7
80	Determination of triplet excitons in organic semiconductor materials. Materials Research Society Symposia Proceedings, 2014, 1629, 1.	0.1	1
81	Towards a video-capable wireless underwater modem: Doppler tolerant broadband acoustic communication. , 2014, , .		17
82	Comparison of Theoretical Approaches Predicting the Coherent-Semicoherent Transition in Nanoscale Axial Heterostructures. Materials Research Society Symposia Proceedings, 2014, 1664, 7.	0.1	1
83	Highly Luminescent Monolayers Prepared by Molecular Layer Deposition. ECS Transactions, 2014, 64, 97-105.	0.5	3
84	Thermal Modification of Nanoscale Mask Openings in Polystyrene Sphere Layers. Materials Research Society Symposia Proceedings, 2014, 1663, 24.	0.1	2
85	Conformal and Highly Luminescent Monolayers of Alq ₃ Prepared by Gas-Phase Molecular Layer Deposition. ACS Applied Materials & Interfaces, 2014, 6, 1193-1199.	8.0	20
86	Manipulating the Morphology of Silver Nanoparticles with Local Plasmonâ€Mediated Control. Particle and Particle Systems Characterization, 2014, 31, 342-346.	2.3	10
87	Top-gate zinc tin oxide thin-film transistors with high bias and environmental stress stability. Applied Physics Letters, 2014, 104, .	3.3	24
88	Polyanionic, Alkylthiosulfate-Based Thiol Precursors for Conjugated Polymer Self-Assembly onto Gold and Silver. ACS Applied Materials & Interfaces, 2014, 6, 11758-11765.	8.0	16
89	Reliability of highâ€resolution electron backscatter diffraction determination of strain and rotation variations using phaseâ€only and cross correlation. Crystal Research and Technology, 2014, 49, 195-203.	1.3	3
90	Highly Robust Indiumâ€Free Transparent Conductive Electrodes Based on Composites of Silver Nanowires and Conductive Metal Oxides. Advanced Functional Materials, 2014, 24, 1671-1678.	14.9	133

#	Article	IF	CITATIONS
91	Overcoming the "Light‧oaking―Issue in Inverted Organic Solar Cells by the Use of Al:ZnO Electron Extraction Layers. Advanced Energy Materials, 2013, 3, 1437-1444.	19.5	160
92	Solution processed metal-oxides for organic electronic devices. Journal of Materials Chemistry C, 2013, 1, 4796.	5.5	128
93	Dynamic Near-Field Scanning Thermal Microscopy on thin films. Microelectronics Reliability, 2013, 53, 1413-1417.	1.7	9
94	Atmospheric Pressure Plasma ALD of Titanium Oxide. Chemical Vapor Deposition, 2013, 19, 167-173.	1.3	14
95	Direct arylation polycondensation as simplified alternative for the synthesis of conjugated (co)polymers. Progress in Polymer Science, 2013, 38, 1805-1814.	24.7	146
96	Ultrathin interlayers of a conjugated polyelectrolyte for low work-function cathodes in efficient inverted organic solar cells. Organic Electronics, 2013, 14, 951-957.	2.6	72
97	Facile Encapsulation of Oxide based Thin Film Transistors by Atomic Layer Deposition based on Ozone. Advanced Materials, 2013, 25, 2821-2825.	21.0	26
98	Elemental distribution, solute solubility and defect free volume in nanocrystalline restricted-equilibrium Cu–Ag alloys. Journal of Physics Condensed Matter, 2013, 25, 115401.	1.8	3
99	Transparent OLED displays. , 2013, , 512-547.		4
100	MUST-READ: Multichannel sample-by-sample turbo resampling equalization and decoding. , 2013, , .		10
101	Photoexcitation dynamics in polyfluorene-based thin films: Energy transfer and amplified spontaneous emission. Physical Review B, 2012, 85, .	3.2	15
102	Room-temperature solution processed SnOx as an electron extraction layer for inverted organic solar cells with superior thermal stability. Journal of Materials Chemistry, 2012, 22, 16224.	6.7	67
103	Low-Temperature, Solution-Processed MoO _{<i>x</i>} for Efficient and Stable Organic Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 1164-1168.	8.0	144
104	Optoelectronic devices based on ultra-violet light sensitive PVK:PCBM layers. Synthetic Metals, 2012, 162, 522-526.	3.9	2
105	Consolidation of mechanically alloyed nanocrystalline Cu–Nb–ZrO2 powder by spark plasma sintering. Journal of Alloys and Compounds, 2012, 535, 62-69.	5.5	10
106	Highly Transparent and Conductive ZTO/Ag/ZTO Multilayer Top Electrodes for Large Area Organic Solar Cells. Energy Procedia, 2012, 31, 110-116.	1.8	6
107	Water as Origin of Hysteresis in Zinc Tin Oxide Thin-Film Transistors. ACS Applied Materials & Interfaces, 2012, 4, 4453-4456.	8.0	62
108	Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications. Advanced Materials, 2012, 24, 5408-5427.	21.0	1,035

#	Article	IF	CITATIONS
109	Realization of ultrathin silver layers in highly conductive and transparent zinc tin oxide/silver/zinc tin oxide multilayer electrodes deposited at room temperature for transparent organic devices. Thin Solid Films, 2012, 520, 4669-4673.	1.8	26
110	Preparation of highâ€quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder. Microscopy Research and Technique, 2012, 75, 711-719.	2.2	4
111	Electronic structure of Vanadium pentoxide: An efficient hole injector for organic electronic materials. Journal of Applied Physics, 2011, 110, .	2.5	224
112	Indium-free bottom electrodes for inverted organic solar cells with simplified cell architectures. Applied Physics Letters, 2011, 99, 033304.	3.3	12
113	Efficient large area semitransparent organic solar cells based on highly transparent and conductive ZTO/Ag/ZTO multilayer top electrodes. Organic Electronics, 2011, 12, 1612-1618.	2.6	107
114	Hydrogen storage properties and microstructure of melt-spun Mg90Ni8RE2 (REÂ=ÂY, Nd, Gd). International Journal of Hydrogen Energy, 2011, 36, 10808-10815.	7.1	97
115	Inverted Organic Solar Cells with Sol–Gel Processed High Workâ€Function Vanadium Oxide Holeâ€Extraction Layers. Advanced Functional Materials, 2011, 21, 4776-4783.	14.9	213
116	Elastically Tunable Selfâ€Organized Organic Lasers. Advanced Materials, 2011, 23, 869-872.	21.0	107
117	Solution Processed Vanadium Pentoxide as Charge Extraction Layer for Organic Solar Cells. Advanced Energy Materials, 2011, 1, 377-381.	19.5	238
118	Microstructure and hydrogen storage properties of melt-spun Mg–Cu–Ni–Y alloys. International Journal of Hydrogen Energy, 2011, 36, 1592-1600.	7.1	82
119	Room temperature lifetime of triplet excitons in fluorescent host/guest systems. Organic Electronics, 2011, 12, 486-491.	2.6	36
120	Spectrally separated optical gain and triplet absorption: Towards continuous wave lasing in organic thin film lasers. Organic Electronics, 2011, 12, 1346-1351.	2.6	36
121	Enhanced stability against bias-stress of metal-oxide thin film transistors deposited at elevated temperatures. Applied Physics Letters, 2011, 99, .	3.3	21
122	An organic p-i-n homojunction as ultra violet light emitting diode and visible-blind photodiode in one. Applied Physics Letters, 2011, 99, 053301.	3.3	33
123	The Role of Transition Metal Oxides in Chargeâ€Generation Layers for Stacked Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2010, 20, 1762-1766.	14.9	150
124	Surface modeling and chemical solution deposition of SrO(SrTiO3) Ruddlesden–Popper phases. Acta Materialia, 2010, 58, 4650-4659.	7.9	20
125	Charge carrier densities in chemically doped organic semiconductors verified by two independent techniques. Applied Physics Letters, 2010, 96, .	3.3	35
126	The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Applied Physics Letters, 2010, 96, .	3.3	103

#	Article	IF	CITATIONS
127	Charge generation layers comprising transition metal-oxide/organic interfaces: Electronic structure and charge generation mechanism. Applied Physics Letters, 2010, 96, .	3.3	171
128	Impact of triplet absorption and triplet-singlet annihilation on the dynamics of optically pumped organic solid-state lasers. Physical Review B, 2010, 81, .	3.2	73
129	Microwave annealing of polymer solar cells with various transparent anode materials. Applied Physics Letters, 2010, 97, 123306.	3.3	21
130	Thin Film Encapsulation of Top-Emitting OLEDs using Atomic Layer Deposition. , 2010, , .		1
131	Transient characteristics of inverted polymer solar cells using titaniumoxide interlayers. Applied Physics Letters, 2010, 96, .	3.3	107
132	Reliability aspects of organic light emitting diodes. , 2010, , .		4
133	Highly Sensitive Determination of the Polaron-Induced Optical Absorption of Organic Charge-Transport Materials. Physical Review Letters, 2009, 102, 137401.	7.8	40
134	Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Applied Physics Letters, 2009, 95, .	3.3	615
135	p -type doping efficiency of MoO3 in organic hole transport materials. Applied Physics Letters, 2009, 94,	3.3	134
136	Optical Gain in Foerster Energy Transfer Based Organic Guest-Host-Systems. Materials Research Society Symposia Proceedings, 2009, 1197, 7.	0.1	1
137	Al ₂ O ₃ /ZrO ₂ Nanolaminates as Ultrahigh Gasâ€Diffusion Barriers—A Strategy for Reliable Encapsulation of Organic Electronics. Advanced Materials, 2009, 21, 1845-1849.	21.0	270
138	Zinc tin oxide based driver for highly transparent active matrix OLED displays. Solid-State Electronics, 2009, 53, 329-331.	1.4	65
139	P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide, Organic Electronics, 2009, 10, 932-938 ELNES study of chemical solution deposited <mml:math <="" altimg="si0036.gif" overflow="scroll" td=""><td>2.6</td><td>392</td></mml:math>	2.6	392
140	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.9	7
141	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www. Iltramicrosc Transparent Electronics for See-Through AMOLED Displays. Journal of Display Technology, 2009, 5, 501-508.	1.2	62
142	Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode. Applied Physics Letters, 2009, 94, .	3.3	200
143	Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition. Applied Physics Letters, 2009, 94, .	3.3	127
144	Encapsulation of Zinc Tin Oxide Based Thin Film Transistors. Journal of Physical Chemistry C, 2009, 113, 11126-11130.	3.1	31

#	Article	IF	CITATIONS
145	A strategy towards p-type doping of organic materials with HOMO levels beyond 6 eV using tungsten oxide. Journal of Materials Chemistry, 2009, 19, 702.	6.7	97
146	Mn Valency at La0.7Sr0.3MnO3/SrTiO3 (0 0 1) Thin Film Interfaces. Microscopy and Microanalysis, 2009, 15, 213-221.	0.4	18
147	Pâ€157: Highlyâ€Efficient Gas Diffusion Barriers Based on Nanolaminates Prepared by Lowâ€Temperature ALD. Digest of Technical Papers SID International Symposium, 2009, 40, 1706-1709.	0.3	0
148	Semi-transparent inverted organic solar cells. Proceedings of SPIE, 2009, , .	0.8	10
149	Transparent Inverted Organic Lightâ€Emitting Diodes with a Tungsten Oxide Buffer Layer. Advanced Materials, 2008, 20, 3839-3843.	21.0	174
150	Indium-free transparent organic light emitting diodes with Al doped ZnO electrodes grown by atomic layer and pulsed laser deposition. Applied Physics Letters, 2008, 93, .	3.3	130
151	Transition metal oxides as charge injecting layer for admittance spectroscopy. Applied Physics Letters, 2008, 92, .	3.3	53
152	Charge injecting layers for admittance spectroscopy. Proceedings of SPIE, 2008, , .	0.8	0
153	Characterization and optimization of the deposition process of aluminum top electrodes for organic devices. , 2008, , .		Ο
154	Highly efficient fully transparent inverted OLEDs. Proceedings of SPIE, 2007, 6655, 148.	0.8	3
155	See-through OLED displays. , 2007, , .		14
156	Optical gain in Coumarin 545T-doped Tris(8-hydroxy-chinolinato)aluminium thin films. Proceedings of SPIE, 2007, , .	0.8	0
157	Loss processes in organic double-heterostructure laser diodes. Proceedings of SPIE, 2007, , .	0.8	5
158	The influence of visible light on transparent zinc tin oxide thin film transistors. Applied Physics Letters, 2007, 91, .	3.3	145
159	Suitability of lithium doped electron injection layers for organic semiconductor lasers. Applied Physics Letters, 2007, 90, 151103.	3.3	14
160	Loss reduction in fully contacted organic laser waveguides using TE2 modes. Applied Physics Letters, 2007, 91, 041113.	3.3	21
161	Polymer lasers: recent advances. , 2007, , .		2
162	Highly efficient organic tandem solar cells using an improved connecting architecture. Applied Physics Letters, 2007, 91, 073519.	3.3	98

#	Article	IF	CITATIONS
163	Stability of transparent zinc tin oxide transistors under bias stress. Applied Physics Letters, 2007, 90, 063502.	3.3	206
164	Temperature-independent field-induced charge separation at doped organic/organic interfaces: Experimental modeling of electrical properties. Physical Review B, 2007, 75, .	3.2	92
165	Highly efficient simplified organic light emitting diodes. Applied Physics Letters, 2007, 91, .	3.3	251
166	Determination of manganese valency in La1â [~] xSrxMnO3 using ELNES in the (S)TEM. Micron, 2007, 38, 224-230.	2.2	36
167	Ultraâ€high longâ€ŧerm stability of oxideâ€TTFTs under current stress. Physica Status Solidi - Rapid Research Letters, 2007, 1, 175-177.	2.4	36
168	Tunable organic thin-film laser pumped by an inorganic violet diode laser. Applied Physics Letters, 2006, 88, 241116.	3.3	136
169	Extraction of EELS white-line intensities of manganese compounds: Methods, accuracy, and valence sensitivity. Ultramicroscopy, 2006, 106, 284-291.	1.9	124
170	Towards See-Through Displays: Fully Transparent Thin-Film Transistors Driving Transparent Organic Light-Emitting Diodes. Advanced Materials, 2006, 18, 738-741.	21.0	300
171	Quasi-continuous-wave operation of an organic thin-film distributed feedback laser. Applied Physics Letters, 2006, 89, 081115.	3.3	49
172	Low loss contacts for organic semiconductor lasers. Applied Physics Letters, 2006, 89, 161113.	3.3	30
173	A laser induced local transfer for patterning of RGB-OLED-displays. , 2005, , .		5
174	A continuously tunable organic DFB laser. Microelectronic Engineering, 2005, 78-79, 364-368.	2.4	24
175	Threshold Reduction in Polymer Lasers Based on Poly(9,9-dioctylfluorene) with Statistical Binaphthyl Units. Advanced Functional Materials, 2005, 15, 1188-1192.	14.9	57
176	An Ultraviolet Organic Thin-Film Solid-State Laser for Biomarker Applications. Advanced Materials, 2005, 17, 31-34.	21.0	77
177	Microcontact Printing as a Versatile Tool for Patterning Organic Field-Effect Transistors. Advanced Materials, 2005, 17, 1523-1527.	21.0	36
178	Organic Semiconductor Lasers for the UV. , 2005, , SSuA3.		0
179	Organic solid-state lasers based on sexiphenyl as active chromophore. Journal of Applied Physics, 2005, 98, 043104.	2.5	27
180	A novel patterning technique for high-resolution RGB-OLED-displays: Laser induced local transfer (LILT). Materials Research Society Symposia Proceedings, 2005, 870, 341.	0.1	3

#	Article	IF	CITATIONS
181	Large Area Electronics Using Printing Methods. Proceedings of the IEEE, 2005, 93, 1321-1329.	21.3	201
182	Organic semiconductor distributed feedback lasers. , 2005, , .		6
183	Organic solid-state ultraviolet-laser based on spiro-terphenyl. Applied Physics Letters, 2005, 87, 161103.	3.3	63
184	Flexible All-Organic Field-Effect Transistors Fabricated by Electrode-Peeling Transfer. Japanese Journal of Applied Physics, 2004, 43, L130-L132.	1.5	6
185	Deep blue widely tunable organic solid-state laser based on a spirobifluorene derivative. Applied Physics Letters, 2004, 84, 4693-4695.	3.3	82
186	Organic vertical-channel transistors structured using excimer laser. Applied Physics Letters, 2004, 85, 5751-5753.	3.3	26
187	All-organic thin-film transistors made of poly(3-butylthiophene) semiconducting and various polymeric insulating layers. Journal of Applied Physics, 2004, 95, 1594-1596.	2.5	91
188	Laser threshold reduction in an all-spiro guest–host system. Applied Physics Letters, 2004, 85, 1659-1661.	3.3	58
189	Organic-GaAs heterostructure diodes for microwave applications. Applied Surface Science, 2004, 234, 22-27.	6.1	6
190	Laser threshold analysis of first- and second-order organic solid state distributed feedback laser. , 2004, , .		1
191	Ultrawide tuning range in doped organic solid-state lasers. Applied Physics Letters, 2004, 85, 1886-1888.	3.3	83
192	Inverted topside-emitting organic light-emitting diodes. , 2004, 5214, 150.		2
193	Wavelength-tunable organic solid-state distributed-feedback laser. Applied Physics B: Lasers and Optics, 2003, 77, 399-402.	2.2	52
194	All-organic thin-film transistors patterned by means of selective electropolymerization. Applied Physics Letters, 2003, 83, 4044-4046.	3.3	47
195	Low-voltage organic electroluminescence device with an ultrathin, hybrid structure. Applied Physics Letters, 2003, 82, 4178-4180.	3.3	39
196	Spatially selective flash sublimation of small organic molecules for organic light-emitting diodes and display applications. Applied Physics Letters, 2003, 82, 2712-2714.	3.3	6
197	Vertical channel all-organic thin-film transistors. Applied Physics Letters, 2003, 82, 4579-4580.	3.3	58
198	Optical and structural anisotropy of InP/GaInP quantum dots for laser applications. Applied Physics Letters, 2003, 83, 887-889.	3.3	15

#	Article	IF	CITATIONS
199	Inverted hybrid organic light-emitting device with polyethylene dioxythiophene-polystyrene sulfonate as an anode buffer layer. Applied Physics Letters, 2003, 83, 5071-5073.	3.3	71
200	Revealing the Defect Structure in Laterally Overgrown GaN Stripes Utilizing Photoelectrochemical Etching Techniques. Japanese Journal of Applied Physics, 2003, 42, 3381-3382.	1.5	0
201	Enhanced mixing characteristics of GaAs/3,4,9,10-perylenetetracarboxylic dianhydride Schottky diodes. Journal of Physics Condensed Matter, 2003, 15, S2611-S2618.	1.8	3
202	Oled Matrix-Displays. Materials Research Society Symposia Proceedings, 2003, 769, 421.	0.1	4
203	Small-signal modulation response of InP/GaInP quantum-dot lasers. Applied Physics Letters, 2002, 80, 4015-4017.	3.3	13
204	Comment on "Tunnel injection In0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature―[Appl. Phys. Lett. 80, 3482 (2002)]. Applied Physics Letters, 2002, 81, 2659-2660.	3.3	3
205	Growth of SiC on Si(100) by Low-Pressure MOVPE. Materials Science Forum, 2001, 353-356, 163-166.	0.3	3
206	Gas permeability of Langmuir–Blodgett (LB) films: characterisation and application. Thin Solid Films, 2000, 379, 240-252.	1.8	17
207	Lasing from excited states in self-assembled InP/GaInP quantum islands. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 263-268.	3.5	14
208	Growth of self-assembled InP quantum islands for red-light-emitting injection lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6, 482-490.	2.9	40
209	Investigations on the performance of multiquantum barriers in short wavelength (630 nm) AlGaInP laser diodes. Applied Physics Letters, 1999, 74, 2158-2160.	3.3	17
210	Red Light Emitting Injection Lasers with Vertically-Aligned InP/GaInP Quantum Dots. Japanese Journal of Applied Physics, 1999, 38, 597-600.	1.5	11
211	Self-assembled InP quantum dots for red LEDs on Si and injection lasers on GaAs. Journal of Crystal Growth, 1999, 201-202, 1121-1125.	1.5	10
212	Hole transport over heterobarriers in InP based multiple quantum well structures. Applied Physics Letters, 1998, 72, 1323-1325.	3.3	1
213	Red-light-emitting injection laser based on InP/GaInP self-assembled quantum dots. Applied Physics Letters, 1998, 73, 1784-1786.	3.3	60
214	Injection lasers with vertically aligned InP/GaInP quantum dots: Dependence of the threshold current on temperature and dot size. Applied Physics Letters, 1998, 73, 3730-3732.	3.3	21
215	Carrier Transport in InP-Based Lasers, Modulators, and Optical Switching Devices. Physica Status Solidi (B): Basic Research, 1997, 204, 570-573.	1.5	0
216	Solid-State NMR Studies of the Structure of Graphite Oxide. The Journal of Physical Chemistry, 1996, 100, 19954-19958.	2.9	392