
Anna Rosell Novel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7699277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MMP-9–Positive Neutrophil Infiltration Is Associated to Blood–Brain Barrier Breakdown and Basal Lamina Type IV Collagen Degradation During Hemorrhagic Transformation After Human Ischemic Stroke. Stroke, 2008, 39, 1121-1126.	2.0	466
2	Increased Brain Expression of Matrix Metalloproteinase-9 After Ischemic and Hemorrhagic Human Stroke. Stroke, 2006, 37, 1399-1406.	2.0	382
3	Etiologic Diagnosis of Ischemic Stroke Subtypes With Plasma Biomarkers. Stroke, 2008, 39, 2280-2287.	2.0	264
4	Multiphasic roles for matrix metalloproteinases after stroke. Current Opinion in Pharmacology, 2008, 8, 82-89.	3.5	212
5	Intra-Arterial Bone Marrow Mononuclear Cells in Ischemic Stroke. Stroke, 2012, 43, 2242-2244.	2.0	208
6	Extension of the Thrombolytic Time Window With Minocycline in Experimental Stroke. Stroke, 2008, 39, 3372-3377.	2.0	204
7	A Matrix Metalloproteinase Protein Array Reveals a Strong Relation Between MMP-9 and MMP-13 With Diffusion-Weighted Image Lesion Increase in Human Stroke. Stroke, 2005, 36, 1415-1420.	2.0	146
8	Astrocytic Induction of Matrix Metalloproteinase-9 and Edema in Brain Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 460-468.	4.3	145
9	Metalloproteinase and stroke infarct size: role for antiâ€inflammatory treatment?. Annals of the New York Academy of Sciences, 2010, 1207, 123-133.	3.8	133
10	The IMPROVE Guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments). Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3488-3517.	4.3	128
11	Plasma and Brain Matrix Metalloproteinase-9 After Acute Focal Cerebral Ischemia in Rats. Stroke, 2009, 40, 2836-2842.	2.0	121
12	Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. Journal of Leukocyte Biology, 2008, 84, 207-214.	3.3	118
13	Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia. Journal of Neurochemistry, 2010, 112, 134-149.	3.9	118
14	Protective Effects of Endothelial Progenitor Cell-Derived Extracellular Mitochondria in Brain Endothelium. Stem Cells, 2018, 36, 1404-1410.	3.2	106
15	Neuroprotective Effects of Overexpressing Tissue Inhibitor of Metalloproteinase TIMP-1. Journal of Neurotrauma, 2009, 26, 1935-1941.	3.4	103
16	A large screening of angiogenesis biomarkers and their association with neurological outcome after ischemic stroke. Atherosclerosis, 2011, 216, 205-211.	0.8	103
17	Vascular MMP-9/TIMP-2 and Neuronal MMP-10 Up-Regulation in Human Brain after Stroke: A Combined Laser Microdissection and Protein Array Study. Journal of Proteome Research, 2009, 8, 3191-3197.	3.7	93
18	Factors Secreted by Endothelial Progenitor Cells Enhance Neurorepair Responses after Cerebral Ischemia in Mice. PLoS ONE, 2013, 8, e73244.	2.5	93

ANNA ROSELL NOVEL

#	Article	IF	CITATIONS
19	Poststroke C-Reactive Protein Is a Powerful Prognostic Tool Among Candidates for Thrombolysis. Stroke, 2006, 37, 1205-1210.	2.0	90
20	Oxidative Stress After Thrombolysis-Induced Reperfusion in Human Stroke. Stroke, 2010, 41, 653-660.	2.0	83
21	Moderate and severe traumatic brain injury induce early overexpression of systemic and brain gelatinases. Intensive Care Medicine, 2008, 34, 1384-1392.	8.2	77
22	Evidence for the efficacy of statins in animal stroke models: a metaâ€analysis. Journal of Neurochemistry, 2012, 122, 233-243.	3.9	70
23	The gender gap in stroke: a meta-analysis. Acta Neurologica Scandinavica, 2012, 125, 83-90.	2.1	70
24	Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke. Microvascular Research, 2010, 80, 317-323.	2.5	69
25	Differentiating ischemic from hemorrhagic stroke using plasma biomarkers: The S100B/RAGE pathway. Journal of Proteomics, 2012, 75, 4758-4765.	2.4	68
26	Interleukin-1β Augments Angiogenic Responses of Murine Endothelial Progenitor Cells <i>in Vitro</i> . Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 933-943.	4.3	66
27	Plasma VAP-1/SSAO Activity Predicts Intracranial Hemorrhages and Adverse Neurological Outcome After Tissue Plasminogen Activator Treatment in Stroke. Stroke, 2010, 41, 1528-1535.	2.0	66
28	Endothelial Progenitor Cell Secretome and Oligovascular Repair in a Mouse Model of Prolonged Cerebral Hypoperfusion. Stroke, 2018, 49, 1003-1010.	2.0	66
29	Matrix Metalloproteinase-13 is Activated and is found in the Nucleus of Neural Cells after Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 398-410.	4.3	61
30	A panel of biomarkers including caspase-3 and D-dimer may differentiate acute stroke from stroke-mimicking conditions in the emergency department. Journal of Internal Medicine, 2011, 270, 166-174.	6.0	61
31	Brain Perihematoma Genomic Profile Following Spontaneous Human Intracerebral Hemorrhage. PLoS ONE, 2011, 6, e16750.	2.5	60
32	Plasma S100B Level After Acute Spontaneous Intracerebral Hemorrhage. Stroke, 2006, 37, 2837-2839.	2.0	58
33	Rapid synthesis of water-dispersible superparamagnetic iron oxide nanoparticles by a microwave-assisted route for safe labeling of endothelial progenitor cells. Acta Biomaterialia, 2014, 10, 3775-3785.	8.3	57
34	Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats. International Journal of Nanomedicine, 2016, Volume 11, 3035-3048.	6.7	56
35	Distal Occlusion of the Middle Cerebral Artery in Mice: Are We Ready to Assess Long-Term Functional Outcome?. Translational Stroke Research, 2013, 4, 297-307.	4.2	55
36	Central nervous system delivery of molecules across the blood-brain barrier. Neurochemistry International, 2021, 144, 104952.	3.8	55

#	Article	IF	CITATIONS
37	In vitro angiogenic performance and in vivo brain targeting of magnetized endothelial progenitor cells for neurorepair therapies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 225-234.	3.3	53
38	Angiogenesis in Symptomatic Intracranial Atherosclerosis. Stroke, 2005, 36, 92-97.	2.0	52
39	Influence of thrombinâ€activatable fibrinolysis inhibitor and plasminogen activator inhibitorâ€1 gene polymorphisms on tissueâ€type plasminogen activatorâ€induced recanalization in ischemic stroke patients. Journal of Thrombosis and Haemostasis, 2007, 5, 1862-1868.	3.8	49
40	Neuregulin-1 Signaling in Brain Endothelial Cells. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 39-43.	4.3	44
41	Endothelial progenitor cells and revascularization following stroke. Brain Research, 2015, 1623, 150-159.	2.2	44
42	The Proteome of Human Brain After Ischemic Stroke. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1105-1115.	1.7	43
43	Matrix metalloproteinases and ADAMs in stroke. Cellular and Molecular Life Sciences, 2019, 76, 3117-3140.	5.4	43
44	Revascularization and endothelial progenitor cells in stroke. American Journal of Physiology - Cell Physiology, 2018, 315, C664-C674.	4.6	41
45	Local administration of porcine immunomodulatory, chemotactic and angiogenic extracellular vesicles using engineered cardiac scaffolds for myocardial infarction. Bioactive Materials, 2021, 6, 3314-3327.	15.6	40
46	Targeting Extracellular Matrix Proteolysis for Hemorrhagic Complications of tPA Stroke Therapy. CNS and Neurological Disorders - Drug Targets, 2008, 7, 235-242.	1.4	39
47	Fas System Activation in Perihematomal Areas After Spontaneous Intracerebral Hemorrhage. Stroke, 2008, 39, 1730-1734.	2.0	39
48	A new method for focal transient cerebral ischaemia by distal compression of the middle cerebral artery. Neuropathology and Applied Neurobiology, 2012, 38, 617-627.	3.2	38
49	Caspase-3 is related to infarct growth after human ischemic stroke. Neuroscience Letters, 2008, 430, 1-6.	2.1	36
50	Lipoprotein-Associated Phospholipase A ₂ Activity Is Associated with Large-Artery Atherosclerotic Etiology and Recurrent Stroke in TIA Patients. Cerebrovascular Diseases, 2012, 33, 150-158.	1.7	36
51	Intra-Arterial Bone Marrow Mononuclear Cell Transplantation Correlates with GM-CSF, PDGF-BB, and MMP-2 Serum Levels in Stroke Patients: Results from a Clinical Trial. Cell Transplantation, 2014, 23, 57-64.	2.5	35
52	Neuronal TIMPâ€1 release accompanies astrocytic MMPâ€9 secretion and enhances astrocyte proliferation induced by βâ€amyloid 25–35 fragment. Journal of Neuroscience Research, 2009, 87, 2115-2125.	2.9	34
53	Cerebral ischaemia and matrix metalloproteinaseâ€9 modulate the angiogenic function of early and late outgrowth endothelial progenitor cells. Journal of Cellular and Molecular Medicine, 2013, 17, 1543-1553.	3.6	34
54	Brain Natriuretic Peptide Is Associated with Worsening and Mortality in Acute Stroke Patients but Adds No Prognostic Value to Clinical Predictors of Outcome. Cerebrovascular Diseases, 2012, 34, 240-245.	1.7	32

#	Article	IF	CITATIONS
55	Impaired Vascular Remodeling after Endothelial Progenitor Cell Transplantation in MMP9-Deficient Mice Suffering Cortical Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1547-1551.	4.3	31
56	Citicoline in preâ€clinical animal models of stroke: a metaâ€analysis shows the optimal neuroprotective profile and the missing steps for jumping into a stroke clinical trial. Journal of Neurochemistry, 2012, 123, 217-225.	3.9	29
57	From brain to blood: New biomarkers for ischemic stroke prognosis. Journal of Proteomics, 2013, 94, 138-148.	2.4	28
58	Development of a neuroprotective peptide that preserves survival pathways by preventing Kidins220/ARMS calpain processing induced by excitotoxicity. Cell Death and Disease, 2015, 6, e1939-e1939.	6.3	27
59	Combining magnetic nanoparticles and icosahedral boron clusters in biocompatible inorganic nanohybrids for cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 101986.	3.3	27
60	Reduction of hippocampal cell death and proteolytic responses in tissue plasminogen activator knockout mice after transient global cerebral ischemia. Neuroscience, 2007, 150, 50-57.	2.3	25
61	Brain proteomics identifies potential simvastatin targets in acute phase of stroke in a rat embolic model. Journal of Neurochemistry, 2014, 130, 301-312.	3.9	25
62	Encapsulation of VEGF ₁₆₅ into magnetic PLGA nanocapsules for potential local delivery and bioactivity in human brain endothelial cells. Journal of Materials Chemistry B, 2015, 3, 2538-2544.	5.8	25
63	Matrix metalloproteinase-13 participates in neuroprotection and neurorepair after cerebral ischemia in mice. Neurobiology of Disease, 2016, 91, 236-246.	4.4	25
64	Lipoprotein-associated phospholipase A2 testing usefulness among patients with symptomatic intracranial atherosclerotic disease. Atherosclerosis, 2011, 218, 181-187.	0.8	24
65	Leukoaraiosis is associated with genes regulating blood-brain barrier homeostasis in ischaemic stroke patients. European Journal of Neurology, 2011, 18, 826-835.	3.3	24
66	Effects of acute post-treatment with dipyridamole in a rat model of focal cerebral ischemia. Brain Research, 2011, 1373, 211-220.	2.2	24
67	Merging Icosahedral Boron Clusters and Magnetic Nanoparticles: Aiming toward Multifunctional Nanohybrid Materials. Inorganic Chemistry, 2018, 57, 462-470.	4.0	24
68	ACE gene polymorphisms influence t-PA-induced brain vessel reopening following ischemic stroke. Neuroscience Letters, 2006, 398, 167-171.	2.1	23
69	Endogenous Activated Protein C Predicts Hemorrhagic Transformation and Mortality after Tissue Plasminogen Activator Treatment in Stroke Patients. Cerebrovascular Diseases, 2009, 28, 143-150.	1.7	23
70	Osteopontin predicts long-term functional outcome among ischemic stroke patients. Journal of Neurology, 2011, 258, 486-493.	3.6	23
71	Profiling and identification of new proteins involved in brain ischemia using MALDI-imaging-mass-spectrometry. Journal of Proteomics, 2017, 152, 243-253.	2.4	23
72	PLGA protein nanocarriers with tailor-made fluorescence/MRI/PET imaging modalities. Nanoscale, 2020, 12, 4988-5002.	5.6	22

ANNA ROSELL NOVEL

#	Article	IF	CITATIONS
73	Importance of Angiogenin and Endothelial Progenitor Cells After Rehabilitation Both in Ischemic Stroke Patients and in a Mouse Model of Cerebral Ischemia. Frontiers in Neurology, 2018, 9, 508.	2.4	20
74	A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke. Molecular and Cellular Proteomics, 2020, 19, 1921-1936.	3.8	20
75	Lower concentrations of thrombin-antithrombin complex (TAT) correlate to higher recanalisation rates among ischaemic stroke patients treated with t-PA. Thrombosis and Haemostasis, 2009, 102, 759-764.	3.4	19
76	The angiogenic gene profile of circulating endothelial progenitor cells from ischemic stroke patients. Vascular Cell, 2013, 5, 3.	0.2	18
77	Genes involved in hemorrhagic transformations that follow recombinant t-PA treatment in stroke patients. Pharmacogenomics, 2013, 14, 495-504.	1.3	18
78	Chemokines after human ischemic stroke: From neurovascular unit to blood using protein arrays. Translational Proteomics, 2014, 3, 1-9.	1.2	18
79	Role of Endogenous Granulocyte-Macrophage Colony Stimulating Factor Following Stroke and Relationship to Neurological Outcome. Current Neurovascular Research, 2009, 6, 246-251.	1.1	18
80	Plasma Matrix Metalloproteinases in Patients With Stroke During Intensive Rehabilitation Therapy. Archives of Physical Medicine and Rehabilitation, 2016, 97, 1832-1840.	0.9	17
81	Characterization of the rat cerebrospinal fluid proteome following acute cerebral ischemia using an aptamer-based proteomic technology. Scientific Reports, 2018, 8, 7899.	3.3	17
82	Decreased Levels of Angiogenic Growth Factors in Intracranial Atherosclerotic Disease despite Severity-Related Increase in Endothelial Progenitor Cell Counts. Cerebrovascular Diseases, 2013, 35, 81-88.	1.7	16
83	Blood Biomarkers in Cardioembolic Stroke. Current Cardiology Reviews, 2010, 6, 194-201.	1.5	16
84	New thrombolytic strategy providing neuroprotection in experimental ischemic stroke: MMP10 alone or in combination with tissue-type plasminogen activator. Cardiovascular Research, 2017, 113, 1219-1229.	3.8	15
85	NURR1 Involvement in Recombinant Tissue-Type Plasminogen Activator Treatment Complications After Ischemic Stroke. Stroke, 2015, 46, 477-484.	2.0	14
86	Role of the MMP9 Gene in Hemorrhagic Transformations After Tissue-Type Plasminogen Activator Treatment in Stroke Patients. Stroke, 2012, 43, 1398-1400.	2.0	13
87	Combining Statins with Tissue Plasminogen Activator Treatment After Experimental and Human Stroke: A Safety Study on Hemorrhagic Transformation. CNS Neuroscience and Therapeutics, 2013, 19, 863-870.	3.9	10
88	Fluorescent Molecular Peroxidation Products. Stroke, 2014, 45, 432-437.	2.0	10
89	Reperfusion Therapy for Acute Stroke Improves Outcome by Decreasing Neuroinflammation. Translational Stroke Research, 2010, 1, 261-267.	4.2	9
90	Endovascular administration of magnetized nanocarriers targeting brain delivery after stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 237-252.	4.3	9

ANNA ROSELL NOVEL

#	Article	IF	CITATIONS
91	Mild hypothermia protects against oxygen glucose deprivation (OGD)-induced cell death in brain slices from adult mice. Journal of Neural Transmission, 2014, 121, 113-117.	2.8	5
92	Angiogenin in the Neurogenic Subventricular Zone After Stroke. Frontiers in Neurology, 2021, 12, 662235.	2.4	5
93	Neuroprotective effects of over-expressing tissue inhibitor of metalloproteinase TIMP-1. Journal of Neurotrauma, 0, , 110306202455053.	3.4	4
94	Blood-based biomarkers and stem cell therapy in human stroke: a systematic review. Molecular Biology Reports, 2020, 47, 6247-6258.	2.3	3
95	Rat Middle Cerebral Artery Occlusion Is Not a Suitable Model for the Study of Stroke-Induced Spontaneous Infections. PLoS ONE, 2014, 9, e99169.	2.5	2
96	Functional Recovery and Serum Angiogenin Changes According to Intensity of Rehabilitation Therapy After Stroke. Frontiers in Neurology, 2021, 12, 767484.	2.4	2
97	Ceruletide and Alpha-1 Antitrypsin as a Novel Combination Therapy for Ischemic Stroke. Neurotherapeutics, 2022, 19, 513-527.	4.4	2
98	Blood biomarkers to identify ischemic stroke etiologies. Therapy: Open Access in Clinical Medicine, 2010, 7, 337-353.	0.2	1
99	Pannexins after stroke. Channels, 2013, 7, 59-59.	2.8	0