Zhongyi Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7699268/publications.pdf

Version: 2024-02-01

94433 102487 4,792 105 37 66 citations h-index g-index papers 107 107 107 5324 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Valorization of Corncob for Production of Furfural and Glucose by Treatment in High-Pressure CO2-H2O and Oxidation-Hydrolysis. Bioenergy Research, 2023, 16, 494-506.	3.9	3
2	Recent Development in Defects Engineered Photocatalysts: An Overview of the Experimental and Theoretical Strategies. Energy and Environmental Materials, 2022, 5, 68-114.	12.8	81
3	Structure diversity and magnetic properties of manganese and cobalt coordination polymers with multiple carboxyl bridges. Inorganica Chimica Acta, 2022, 533, 120788.	2.4	3
4	Heterojunction-Promoted Sodium Ion Storage of Bimetallic Selenides Encapsulated in a Carbon Sheath with Boosted Ion Diffusion and Stable Structure. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6926-6936.	8.0	15
5	Time-resolved color-changing long-afterglow for security systems based on metal–organic hybrids. Inorganic Chemistry Frontiers, 2022, 9, 584-591.	6.0	10
6	Engineering Interface on a 3D Co _{<i>x</i>} Ni _{1–<i>x</i>} (OH) ₂ @MoS ₂ Hollow Heterostructure for Robust Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 9116-9125.	8.0	17
7	<i>In Situ</i> Construction of Bifunctional N-Doped Carbon-Anchored Co Nanoparticles for OER and ORR. ACS Applied Materials & Samp; Interfaces, 2022, 14, 8549-8556.	8.0	56
8	Identification of the Encapsulation Effect of Heteropolyacid in the Si–Al Framework toward Benzene Alkylation. ACS Catalysis, 2022, 12, 4765-4776.	11.2	8
9	Surface Modulation of 3D Porous CoNiP Nanoarrays In Situ Grown on Nickel Foams for Robust Overall Water Splitting. International Journal of Molecular Sciences, 2022, 23, 5290.	4.1	2
10	Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p—n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Research, 2022, 15, 6987-6998.	10.4	43
11	High-Performance Perovskite Bifunctional Electrocatalysts for Oxygen Reduction Reaction and Oxygen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 8852-8861.	5.1	5
12	Five lead(II) coordinated polymers assembled from asymmetric azoles carboxylate ligands: Synthesis, structures and fluorescence properties. Inorganica Chimica Acta, 2021, 514, 120035.	2.4	6
13	FeOOH derived urchin-like Fe2O3@C as superior anode for sodium ion storage. Journal of Alloys and Compounds, 2021, 858, 157714.	5.5	9
14	Design of charge transfer channels: defective TiO ₂ /MoP supported on carbon cloth for solar-light-driven hydrogen generation. Inorganic Chemistry Frontiers, 2021, 8, 2017-2026.	6.0	6
15	Identification of Metal/Acid Matching Balance over Bifunctional Pd/Hβ toward Benzene Hydroalkylation. Industrial & Engineering Chemistry Research, 2021, 60, 2326-2336.	3.7	9
16	Structural diversity and magnetic properties of six ferrocenyl monocarboxylate Mn(<scp>ii</scp>), Ni(<scp>ii</scp>) and Co(<scp>ii</scp>) complexes with 1D aqua, carboxyl or dinuclear hydroxyl bridges. CrystEngComm, 2021, 23, 3185-3195.	2.6	5
17	Heterojunction interfacial promotion of fast and prolonged alkali-ion storage of urchin-like Nb ₂ O ₅ @C nanospheres. Journal of Materials Chemistry A, 2021, 9, 23467-23476.	10.3	13
18	Effects of Ni‣oading on the Performance of Ni/SiO ₂ Catalysts for the Highly Selective Hydrogenation of Biphenyl to Cyclohexylbenzene. ChemistrySelect, 2021, 6, 3897-3902.	1.5	2

#	Article	IF	CITATIONS
19	Phosphorus-Doped 3D RuCo Nanowire Arrays on Nickel Foam with Enhanced Electrocatalytic Activity for Overall Water Splitting. ACS Omega, 2021, 6, 10234-10241.	3.5	9
20	Highly dispersed and ultra-small Ru nanoparticles deposited on silica support as highly active and stable catalyst for biphenyl hydrogenation. Molecular Catalysis, 2021, 508, 111577.	2.0	2
21	Optimized mesoporous silica nanoparticle-based drug delivery system with removable manganese oxide gatekeeper for controlled delivery of doxorubicin. Journal of Colloid and Interface Science, 2021, 592, 227-236.	9.4	44
22	Effect of ZnSO4, MnSO4 and FeSO4 on the Partial Hydrogenation of Benzene over Nano Ru-Based Catalysts. International Journal of Molecular Sciences, 2021, 22, 7756.	4.1	5
23	Exploration of amorphous hollow FeOOH@C nanosphere on energy storage for sodium ion batteries. International Journal of Hydrogen Energy, 2021, 46, 26457-26465.	7.1	7
24	High Proton Conduction in Two Highly Water-Stable Lanthanide Coordination Polymers from a Triazole Multicarboxylate Ligand. Inorganic Chemistry, 2021, 60, 13242-13251.	4.0	9
25	In-situ constructing S-scheme/Schottky junction and oxygen vacancy on SrTiO3 to steer charge transfer for boosted photocatalytic H2 evolution. Chemical Engineering Journal, 2021, 417, 129231.	12.7	58
26	Intrinsic-structural-modulated carbon cloth as efficient electrocatalyst for water oxidation. Applied Catalysis B: Environmental, 2021, 292, 120152.	20.2	23
27	Ultrafine and Highly Dispersed Pd/SiO2 for Suzukiâ^'Miyaura Cross-coupling Reactions. Catalysis Letters, 2021, 151, 2291-2301.	2.6	4
28	(La _{0.65} Sr _{0.3}) _{0.95} FeO _{3â^'<i>Î'</i>} perovskite with high oxygen vacancy as efficient bifunctional electrocatalysts for Znâ€"air batteries. RSC Advances, 2021, 11, 38977-38981.	3.6	4
29	Molybdenum Sulfide Nanosheets Coupled with Ni ₂ P Hollow Microspheres as an Efficient Electrocatalyst for Hydrogen Generation over a Wide pH Range Mediated by a 3D/2D Interface. ChemElectroChem, 2020, 7, 355-361.	3.4	6
30	A General Route to Prepare Lowâ€Rutheniumâ€Content Bimetallic Electrocatalysts for pHâ€Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angewandte Chemie, 2020, 132, 1735-1743.	2.0	40
31	Ornithine decarboxylase inhibition downregulates multiple pathways involved in the formation of precancerous lesions of esophageal squamous cell cancer. Molecular Carcinogenesis, 2020, 59, 215-226.	2.7	16
32	A General Route to Prepare Lowâ€Rutheniumâ€Content Bimetallic Electrocatalysts for pHâ€Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angewandte Chemie - International Edition, 2020, 59, 1718-1726.	13.8	452
33	Hydrogenâ€Etched Bifunctional Sulfurâ€Defectâ€Rich ReS ₂ /CC Electrocatalyst for Highly Efficient HER and OER. Small, 2020, 16, e2003007.	10.0	64
34	Nickel foam supported cobalt phosphate electrocatalyst for alkaline oxygen evolution reaction. Journal of Power Sources, 2020, 461, 228165.	7.8	29
35	Highly efficient hydrolysis of ammonia borane using ultrafine bimetallic RuPd nanoalloys encapsulated in porous g-C3N4. Fuel, 2020, 277, 118243.	6.4	79
36	Hierarchical Porous g-C ₃ N ₄ Coupled Ultrafine RuNi Alloys as Extremely Active Catalysts for the Hydrolytic Dehydrogenation of Ammonia Borane. ACS Sustainable Chemistry and Engineering, 2020, 8, 8458-8468.	6.7	61

#	Article	IF	Citations
37	Ball-in-ball structured SnO2@FeOOH@C nanospheres toward advanced anode material for sodium ion batteries. Journal of Alloys and Compounds, 2020, 838, 155394.	5.5	21
38	Aqueous Self-Assembly of Block Copolymers to Form Manganese Oxide-Based Polymeric Vesicles for Tumor Microenvironment-Activated Drug Delivery. Nano-Micro Letters, 2020, 12, 124.	27.0	31
39	Polymerization of dopamine accompanying its coupling to induce self-assembly of block copolymer and application in drug delivery. Polymer Chemistry, 2020, 11, 2811-2821.	3.9	25
40	Cobalt Phosphide-Embedded Reduced Graphene Oxide as a Bifunctional Catalyst for Overall Water Splitting. ACS Omega, 2020, 5, 6516-6522.	3.5	31
41	Ultrafine Ru nanoparticles anchored to porous g-C3N4 as efficient catalysts for ammonia borane hydrolysis. Applied Catalysis A: General, 2020, 595, 117511.	4.3	60
42	Synthesis, Structures, and Antibacterial Activities of Four Similar 1D Metalâ€organic Polymers with Different Metal lons. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 532-539.	1.2	4
43	Synthesis, Structures and Magnetic Properties of Cu II and Co II Compounds Based on Asymmetric 5â€(1 H) Tj E	ГQq1 1 0.:	78 4 314 rgBT
44	Supporting bimetallic sulfide on 3D TiO2 hollow shells to boost photocatalytic activity. Chemical Engineering Journal, 2020, 390, 124602.	12.7	18
45	Enhancing the matching of acid/metal balance by engineering an extra Si–Al framework outside the Pd/HBeta catalyst towards benzene hydroalkylation. Catalysis Science and Technology, 2020, 10, 1467-1476.	4.1	17
46	Investigation on Mn3O4 Coated Ru Nanoparticles for Partial Hydrogenation of Benzene towards Cyclohexene Production Using ZnSO4, MnSO4 and FeSO4 as Reaction Additives. Nanomaterials, 2020, 10, 809.	4.1	3
47	Engineering Unique Ball-In-Ball Structured (Ni _{0.33} Co _{0.67}) ₉ S ₈ @C Nanospheres for Advanced Sodium Storage. ACS Applied Materials & Sodium Storage.	8.0	22
48	Selective Hydrogenation of Benzene: Progress of Understanding for the Ru-Based Catalytic System Design. Industrial & Design. Industrial	3.7	18
49	Biomassâ€Derived Carbon Dots and Their Applications. Energy and Environmental Materials, 2019, 2, 172-192.	12.8	295
50	Oxygen vacancy engineered SrTiO ₃ nanofibers for enhanced photocatalytic H ₂ production. Journal of Materials Chemistry A, 2019, 7, 17974-17980.	10.3	88
51	Chitosan-reduced graphene oxide hybrids encapsulated Pd(0) nanocatalysts for H2 generation from ammonia borane. International Journal of Hydrogen Energy, 2019, 44, 23610-23619.	7.1	27
52	Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values. Nano Energy, 2019, 65, 104023.	16.0	117
53	Ruthenium–Cobalt Nanoalloy Embedded within Hollow Carbon Spheres as a Bifunctionally Robust Catalyst for Hydrogen Generation from Water Splitting and Ammonia Borane Hydrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 18744-18752.	6.7	60
54	Direct Conversion of Biomass into Compact Air Electrode with Atomically Dispersed Oxygen and Nitrogen Coordinated Copper Species for Flexible Zinc–Air Batteries. ACS Applied Energy Materials, 2019, 2, 8659-8666.	5.1	16

#	Article	IF	Citations
55	Enhanced cobalt-based catalysts through alloying ruthenium to cobalt lattice matrix as an efficient catalyst for overall water splitting. Electrochimica Acta, 2019, 327, 134958.	5.2	24
56	Green synthesis of nitrogen and sulfur co-doped carbon dots from <i>Allium fistulosum</i> for cell imaging. New Journal of Chemistry, 2019, 43, 718-723.	2.8	65
57	Electrochemical sensor based on a three dimensional nanostructured MoS ₂ nanosphere-PANI/reduced graphene oxide composite for simultaneous detection of ascorbic acid, dopamine, and uric acid. RSC Advances, 2019, 9, 2997-3003.	3.6	70
58	Metal–Organic Framework-Assisted Nanoplatform with Hydrogen Peroxide/Glutathione Dual-Sensitive On-Demand Drug Release for Targeting Tumors and Their Microenvironment. ACS Applied Bio Materials, 2019, 2, 895-905.	4.6	34
59	Hollow carbon shells enhanced by confined ruthenium as cost-efficient and superior catalysts for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 6676-6685.	10.3	74
60	Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging. Chinese Chemical Letters, 2019, 30, 2323-2327.	9.0	172
61	Twelve Cadmium(II) Coordination Frameworks with Asymmetric Pyridinyl Triazole Carboxylate: Syntheses, Structures, and Fluorescence Properties. Crystal Growth and Design, 2019, 19, 3785-3806.	3.0	41
62	SnS2@C Hollow Nanospheres with Robust Structural Stability as High-Performance Anodes for Sodium Ion Batteries. Nano-Micro Letters, 2019, 11, 14.	27.0	80
63	Cobalt-Ruthenium Nanoalloys Parceled in Porous Nitrogen-Doped Graphene as Highly Efficient Difunctional Catalysts for Hydrogen Evolution Reaction and Hydrolysis of Ammonia Borane. ACS Sustainable Chemistry and Engineering, 2019, 7, 7014-7023.	6.7	95
64	Unified Catalyst for Efficient and Stable Hydrogen Production by Both the Electrolysis of Water and the Hydrolysis of Ammonia Borane. Advanced Sustainable Systems, 2019, 3, 1800161.	5.3	45
65	Syntheses, crystal structures, antibacterial activities of Cu(II) and Ni(II) complexes based on terpyridine polycarboxylic acid ligand. Journal of Molecular Structure, 2019, 1184, 503-511.	3.6	37
66	Two-dimensional porphyrin-based covalent organic framework: A novel platform for sensitive epidermal growth factor receptor and living cancer cell detection. Biosensors and Bioelectronics, 2019, 126, 734-742.	10.1	124
67	Synthesis of Aminopyrene-tetraone-Modified Reduced Graphene Oxide as an Electrode Material for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 4729-4738.	6.7	43
68	Design and Development of Graphene Oxide Nanoparticle/Chitosan Hybrids Showing pH-Sensitive Surface Charge-Reversible Ability for Efficient Intracellular Doxorubicin Delivery. ACS Applied Materials & Description (2018), 10, 6608-6617.	8.0	136
69	Six metal-organic frameworks assembled from asymmetric triazole carboxylate ligands: Synthesis, crystal structures, photoluminescence properties and antibacterial activities. Inorganica Chimica Acta, 2018, 473, 112-120.	2.4	49
70	High-performance supercapacitors based on porous activated carbons from cattail wool. Journal of Materials Science, 2018, 53, 9191-9205.	3.7	23
71	Syntheses, structures, luminescent properties and antibacterial activities of seven polymers based on an asymmetric triazole dicarboxylate ligand. Polyhedron, 2018, 139, 296-307.	2.2	28
72	Selective Hydrogenation of Benzene to Cyclohexene over Ru-Zn Catalysts: Investigations on the Effect of Zn Content and ZrO2 as the Support and Dispersant. Catalysts, 2018, 8, 513.	3.5	6

#	Article	IF	Citations
73	Investigation on Electron Distribution and Synergetic to Enhance Catalytic Activity in Bimetallic Ni(II)/Pd(II) Molecular Monolayer. ChemCatChem, 2018, 10, 5141-5153.	3.7	16
74	Core–Shell Heterostructured CuFe@FeFe Prussian Blue Analogue Coupling with Silver Nanoclusters via a One-Step Bioinspired Approach: Efficiently Nonlabeled Aptasensor for Detection of Bleomycin in Various Aqueous Environments. Analytical Chemistry, 2018, 90, 13624-13631.	6.5	32
75	Charge reversible and biodegradable nanocarriers showing dual pH-/reduction-sensitive disintegration for rapid site-specific drug delivery. Colloids and Surfaces B: Biointerfaces, 2018, 169, 313-320.	5.0	46
76	Unconventional Preparation of Polymer/Amorphous Manganese Oxide-Based Biodegradable Nanohybrids for Low Premature Release and Acid/Glutathione-Activated Magnetic Resonance Imaging. ACS Applied Nano Materials, 2018, 1, 2621-2631.	5.0	18
77	Ru Nanospheres in Water Drops for Enhanced Catalytic Performances in Selective Hydrogenation. ACS Applied Energy Materials, 2018, 1, 4277-4284.	5.1	12
78	Selective Hydrogenation of Benzene to Cyclohexene over Ru-Zn Catalysts: Mechanism Investigation on NaOH as a Reaction Additive. Catalysts, 2018, 8, 104.	3.5	6
79	Photophysical/Chemistry Properties of Distyryl-BODIPY Derivatives: An Experimental and Density Functional Theoretical Study. Journal of Physical Chemistry A, 2018, 122, 5574-5579.	2.5	19
80	Carbonâ€Quantumâ€Dotsâ€Loaded Ruthenium Nanoparticles as an Efficient Electrocatalyst for Hydrogen Production in Alkaline Media. Advanced Materials, 2018, 30, e1800676.	21.0	406
81	Heterophase-structured nanocrystals as superior supports for Ru-based catalysts in selective hydrogenation of benzene. Scientific Reports, 2017, 7, 39847.	3.3	14
82	Synthesis, structure, magnetic properties of a 2D (3,4,5)-connected framework based on the tetranuclear Cu 4 units. Inorganic Chemistry Communication, 2017, 81, 47-50.	3.9	14
83	Fabrication of Novel Ternary Three-Dimensional RuO ₂ /Graphitic-C ₃ N ₄ @reduced Graphene Oxide Aerogel Composites for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2017, 5, 4982-4991.	6.7	85
84	Five Multidimensional Co(II)-Complexes (Zero-Dimensional to Three-Dimensional) Derived from an Asymmetric 5-(Pyridin-3-yl)-1 <i>H</i> -pyrazole-3-carboxylic Acid: Syntheses, Structures, and Magnetic Properties. Crystal Growth and Design, 2017, 17, 2975-2986.	3.0	45
85	Piezochromic Carbon Dots with Twoâ€photon Fluorescence. Angewandte Chemie, 2017, 129, 6283-6287.	2.0	64
86	Piezochromic Carbon Dots with Twoâ€photon Fluorescence. Angewandte Chemie - International Edition, 2017, 56, 6187-6191.	13.8	223
87	Design and Tailoring of the 3D Macroporous Hydrous RuO ₂ Hierarchical Architectures with a Hard-Template Method for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4577-4586.	8.0	84
88	3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage. Scientific Reports, 2017, 7, 4886.	3.3	82
89	Polyvinylpyrrolidone stabilized-Ru nanoclusters loaded onto reduced graphene oxide as high active catalyst for hydrogen evolution. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	23
90	Four 1-D metal-organic polymers self-assembled from semi-flexible benzimidazole-based ligand: Syntheses, structures and fluorescent properties. Journal of Molecular Structure, 2016, 1118, 139-146.	3.6	12

#	Article	IF	CITATIONS
91	Surface engineering on a nanocatalyst: basic zinc salt nanoclusters improve catalytic performances of Ru nanoparticles. Journal of Materials Chemistry A, 2016, 4, 17694-17703.	10.3	16
92	Five metal-organic frameworks based on 5-(pyridine-3-yl)pyrazole-3-carboxylic acid ligand: Syntheses, structures and properties. Inorganica Chimica Acta, 2016, 453, 86-94.	2.4	24
93	Roles of temperature, solvent, M/L ratios and anion in preparing complexes containing a Himta ligand. CrystEngComm, 2016, 18, 1350-1362.	2.6	39
94	Effect of (Zn(OH)2)3(ZnSO4)(H2O)5 on the performance of Ruâ€"Zn catalyst for benzene selective hydrogenation to cyclohexene. Applied Catalysis A: General, 2013, 450, 160-168.	4.3	37
95	Selective hydrogenation of benzene to cyclohexene over nanocomposite Ru-Mn/ZrO2 catalysts. Chinese Journal of Catalysis, 2013, 34, 684-694.	14.0	15
96	The role of La in improving the selectivity to cyclohexene of Ru catalyst for hydrogenation of benzene. Journal of Molecular Catalysis A, 2013, 368-369, 119-124.	4.8	15
97	Effect of transition metals (Cr, Mn, Fe, Co, Ni, Cu and Zn) on the hydrogenation properties of benzene over Ru-based catalyst. Applied Catalysis A: General, 2013, 464-465, 1-9.	4.3	25
98	Selective hydrogenation of benzene to cyclohexene in continuous reaction device with two reaction reactors in serie over Ru-Co-B/ZrO2 catalysts. Chinese Journal of Catalysis, 2013, 34, 1482-1488.	14.0	14
99	Effect of alcohols as additives on the performance of a nano-sized Ru–Zn(2.8%) catalyst for selective hydrogenation of benzene to cyclohexene. Chemical Engineering Journal, 2013, 218, 415-424.	12.7	28
100	Selective Hydrogenation of Benzene to Cyclohexene over a Ru-Zn catalyst with Diethanolamine as an Additive. Chinese Journal of Catalysis, 2012, 33, 610-620.	14.0	22
101	Coll, MnII and Cull-directed coordination polymers with mixed tetrazolate–dicarboxylate heterobridges exhibiting spin-canted, spin-frustrated antiferromagnetism and a slight spin-flop transition. Dalton Transactions, 2011, 40, 10082.	3.3	55
102	Selective hydrogenation of benzene to cyclohexene on Ru-based catalysts promoted with Mn and Zn. Journal of Natural Gas Chemistry, 2011, 20, 53-59.	1.8	31
103	Effect of Organic Additives on the Performance of Nanoâ€sized Ruâ€Zn Catalyst. Chinese Journal of Chemistry, 2011, 29, 369-373.	4.9	24
104	Highly efficient Cuâ€"Znâ€"Al catalyst for the hydrogenation of dimethyl adipate to 1,6-hexanediol: influence of calcination temperature. Reaction Kinetics, Mechanisms and Catalysis, 2010, 100, 427.	1.7	11
105	The Modifiable Character of a Novel Ru-Fe-B/ZrO2 Catalyst for Benzene Selective Hydrogenation to Cyclohexene. Chinese Journal of Chemistry, 2010, 28, 1927-1934.	4.9	22