David G Mackanic

List of Publications by Citations

Source: https://exaly.com/author-pdf/7699185/david-g-mackanic-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 73
 15,991
 49
 78

 papers
 citations
 h-index
 g-index

 78
 20,316
 25.2
 7.09

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
73	Pathways for practical high-energy long-cycling lithium metal batteries. <i>Nature Energy</i> , 2019 , 4, 180-18	6 62.3	1202
7 ²	Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. <i>Nature</i> , 2018 , 555, 83-88	50.4	1089
71	Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. <i>Nature Communications</i> , 2013 , 4, 1943	17.4	971
70	Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. <i>Nature Chemistry</i> , 2013 , 5, 1042-8	17.6	856
69	Side Chain Engineering in Solution-Processable Conjugated Polymers. <i>Chemistry of Materials</i> , 2014 , 26, 604-615	9.6	798
68	Improving the performance of lithium-sulfur batteries by conductive polymer coating. <i>ACS Nano</i> , 2011 , 5, 9187-93	16.7	756
67	A highly stretchable, transparent, and conductive polymer. <i>Science Advances</i> , 2017 , 3, e1602076	14.3	674
66	Highly stretchable polymer semiconductor films through the nanoconfinement effect. <i>Science</i> , 2017 , 355, 59-64	33.3	651
65	Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin. <i>Advanced Materials</i> , 2018 , 30, e1706846	24	523
64	An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. <i>Nature Nanotechnology</i> , 2018 , 13, 1057-1065	28.7	510
63	Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. <i>Advanced Materials</i> , 2019 , 31, e1904765	24	498
62	Skin-inspired electronic devices. <i>Materials Today</i> , 2014 , 17, 321-331	21.8	380
61	Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4815-4820	16.4	352
60	Designing polymers for advanced battery chemistries. <i>Nature Reviews Materials</i> , 2019 , 4, 312-330	73.3	333
59	Stretchable, elastic materials and devices for solar energy conversion. <i>Energy and Environmental Science</i> , 2011 , 4, 3314	35.4	322
58	Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5280-5289	16.4	312
57	A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. <i>Advanced Materials</i> , 2014 , 26, 796-804	24	312

(2020-2019)

56	Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nature Biomedical Engineering, 2019 , 3, 58-68	19	284
55	A stretchable and biodegradable strain and pressure sensor for orthopaedic application. <i>Nature Electronics</i> , 2018 , 1, 314-321	28.4	275
54	Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. <i>Nature Energy</i> , 2020 , 5, 526-533	62.3	258
53	A wireless body area sensor network based on stretchable passive tags. <i>Nature Electronics</i> , 2019 , 2, 361	-3684	258
52	High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating. <i>ACS Energy Letters</i> , 2016 , 1, 1247-1255	20.1	218
51	Multifunctional materials for implantable and wearable photonic healthcare devices. <i>Nature Reviews Materials</i> , 2020 , 5, 149-165	73.3	206
50	Effects of Polymer Coatings on Electrodeposited Lithium Metal. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11735-11744	16.4	204
49	3D Porous Sponge-Inspired Electrode for Stretchable Lithium-Ion Batteries. <i>Advanced Materials</i> , 2016 , 28, 3578-83	24	199
48	Concentrated mixed cation acetate Water-in-salt Bolutions as green and low-cost high voltage electrolytes for aqueous batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 2876-2883	35.4	198
47	Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. <i>Nature Communications</i> , 2018 , 9, 2740	17.4	194
46	Fast and reversible thermoresponsive polymer switching materials for safer batteries. <i>Nature Energy</i> , 2016 , 1,	62.3	190
45	Materials and structural designs of stretchable conductors. <i>Chemical Society Reviews</i> , 2019 , 48, 2946-29	65 8.5	189
44	Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. <i>Nature Electronics</i> , 2018 , 1, 183-190	28.4	180
43	High-Areal-Capacity Silicon Electrodes with Low-Cost Silicon Particles Based on Spatial Control of Self-Healing Binder. <i>Advanced Energy Materials</i> , 2015 , 5, 1401826	21.8	166
42	A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Self-Healing Elastic Polymer. <i>Advanced Materials</i> , 2016 , 28, 2455-61	24	163
41	Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. <i>Nature Communications</i> , 2019 , 10, 1164	17.4	155
40	Ionically Conductive Self-Healing Binder for Low Cost Si Microparticles Anodes in Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1703138	21.8	153
39	Artificial multimodal receptors based on ion relaxation dynamics. <i>Science</i> , 2020 , 370, 961-965	33.3	141

38	Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. <i>Nature Communications</i> , 2019 , 10, 5384	17.4	126
37	Stretchable Lithium-Ion Batteries Enabled by Device-Scaled Wavy Structure and Elastic-Sticky Separator. <i>Advanced Energy Materials</i> , 2017 , 7, 1701076	21.8	120
36	Stretchable electrochemical energy storage devices. Chemical Society Reviews, 2020, 49, 4466-4495	58.5	110
35	Stretchable and ultraflexible organic electronics. <i>MRS Bulletin</i> , 2017 , 42, 93-97	3.2	97
34	Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte. <i>Advanced Energy Materials</i> , 2018 , 8, 1800703	21.8	95
33	Bring on the bodyNET. <i>Nature</i> , 2017 , 549, 328-330	50.4	90
32	A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7393-7403	16.4	89
31	A Dual-Crosslinking Design for Resilient Lithium-Ion Conductors. <i>Advanced Materials</i> , 2018 , 30, e18041	42 4	80
30	The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes. <i>ACS Applied Materials & Empty Interfaces</i> , 2016 , 8, 2318-24	9.5	73
29	Tortuosity Effects in Lithium-Metal Host Anodes. <i>Joule</i> , 2020 , 4, 938-952	27.8	69
28	Enabling Deformable and Stretchable Batteries. Advanced Energy Materials, 2020, 10, 2001424	21.8	58
27			
	Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes. <i>Cell Reports Physical Science</i> , 2020 , 1, 100119	6.1	58
26		21.8	58
26 25	Physical Science, 2020, 1, 100119 Nonpolar Alkanes Modify Lithium-Ion Solvation for Improved Lithium Deposition and Stripping.		
	Physical Science, 2020, 1, 100119 Nonpolar Alkanes Modify Lithium-Ion Solvation for Improved Lithium Deposition and Stripping. Advanced Energy Materials, 2019, 9, 1902116 Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nature	21.8	49
25	Physical Science, 2020, 1, 100119 Nonpolar Alkanes Modify Lithium-Ion Solvation for Improved Lithium Deposition and Stripping. Advanced Energy Materials, 2019, 9, 1902116 Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nature Energy, 2022, 7, 94-106 Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nature Energy	21.8 62.3	49
25 24	Nonpolar Alkanes Modify Lithium-Ion Solvation for Improved Lithium Deposition and Stripping. Advanced Energy Materials, 2019, 9, 1902116 Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nature Energy, 2022, 7, 94-106 Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nature Energy, 2021, 6, 487-494 Electrode Design with Integration of High Tortuosity and Sulfur-Philicity for High-Performance	21.8 62.3 62.3	49 49 49

20	Capturing the swelling of solid-electrolyte interphase in lithium metal batteries Science, 2022, 375, 66	-7 3 9 .3	40
19	Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery. Journal of the American Chemical Society, 2021 , 143, 18703-18713	16.4	40
18	Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. <i>Science Advances</i> , 2021 , 7,	14.3	40
17	Dual-Solvent Li-Ion Solvation Enables High-Performance Li-Metal Batteries. <i>Advanced Materials</i> , 2021 , 33, e2008619	24	39
16	High-Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900347	6.4	33
15	A design strategy for high mobility stretchable polymer semiconductors. <i>Nature Communications</i> , 2021 , 12, 3572	17.4	27
14	Efficient Lithium Metal Cycling over a Wide Range of Pressures from an Anion-Derived Solid-Electrolyte Interphase Framework. <i>ACS Energy Letters</i> , 2021 , 6, 816-825	20.1	25
13	A Cation-Tethered Flowable Polymeric Interface for Enabling Stable Deposition of Metallic Lithium. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21393-21403	16.4	24
12	Biomimetic Impact Protective Supramolecular Polymeric Materials Enabled by Quadruple H-Bonding. <i>Journal of the American Chemical Society</i> , 2021 , 143, 1162-1170	16.4	24
11	Enhanced Cycling Stability of Sulfur Electrodes through Effective Binding of Pyridine-Functionalized Polymer. <i>ACS Energy Letters</i> , 2017 , 2, 2454-2462	20.1	22
10	Potentiometric Measurement to Probe Solvation Energy and Its Correlation to Lithium Battery Cyclability. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10301-10308	16.4	21
9	Liquid electrolyte: The nexus of practical lithium metal batteries. Joule, 2022,	27.8	19
8	F4-TCNQ as an Additive to Impart Stretchable Semiconductors with High Mobility and Stability. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000251	6.4	18
7	Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte. <i>Energy and Environmental Science</i> , 2020 , 13, 4312-4321	35.4	17
6	A Design Strategy for Intrinsically Stretchable High-Performance Polymer Semiconductors: Incorporating Conjugated Rigid Fused-Rings with Bulky Side Groups. <i>Journal of the American Chemical Society</i> , 2021 , 143, 11679-11689	16.4	16
5	Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23180-23187	16.4	12
4	Reprocessable and Recyclable Polymer Network Electrolytes via Incorporation of Dynamic Covalent Bonds. <i>Chemistry of Materials</i> , 2022 , 34, 2393-2399	9.6	7
3	Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. <i>Angewandte Chemie</i> , 2020 , 132, 23380-23387	3.6	6

Analysis of Photothermal Release of Oligonucleotides from Hollow Gold Nanospheres by Surface-Enhanced Raman Scattering. *Journal of Physical Chemistry C*, **2016**, 120, 20677-20683

3.8 6

Effects of Polymer Coating Mechanics at Solid-Electrolyte Interphase for Stabilizing Lithium Metal Anodes. *Advanced Energy Materials*, **2022**, 12, 2103187

21.8 3