
David G Mackanic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7699185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4, 180-186.	19.8	2,101
2	Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555, 83-88.	13.7	1,588
3	Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Communications, 2013, 4, 1943.	5.8	1,138
4	Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chemistry, 2013, 5, 1042-1048.	6.6	1,031
5	A highly stretchable, transparent, and conductive polymer. Science Advances, 2017, 3, e1602076.	4.7	962
6	Electronic Skin: Recent Progress and Future Prospects for Skinâ€Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Advanced Materials, 2019, 31, e1904765.	11.1	936
7	Side Chain Engineering in Solution-Processable Conjugated Polymers. Chemistry of Materials, 2014, 26, 604-615.	3.2	932
8	Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355, 59-64.	6.0	897
9	Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating. ACS Nano, 2011, 5, 9187-9193.	7.3	815
10	Tough and Waterâ€Insensitive Selfâ€Healing Elastomer for Robust Electronic Skin. Advanced Materials, 2018, 30, e1706846.	11.1	798
11	An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nature Nanotechnology, 2018, 13, 1057-1065.	15.6	736
12	Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy, 2020, 5, 526-533.	19.8	642
13	Designing polymers for advanced battery chemistries. Nature Reviews Materials, 2019, 4, 312-330.	23.3	579
14	Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nature Biomedical Engineering, 2019, 3, 58-68.	11.6	499
15	Skin-inspired electronic devices. Materials Today, 2014, 17, 321-331.	8.3	487
16	A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electronics, 2018, 1, 314-321.	13.1	469
17	Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. Journal of the American Chemical Society, 2018, 140, 5280-5289.	6.6	464
18	Lithium Metal Anodes with an Adaptive "Solid-Liquid―Interfacial Protective Layer. Journal of the American Chemical Society, 2017, 139, 4815-4820.	6.6	460

#	Article	IF	CITATIONS
19	A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2019, 2, 361-368.	13.1	421
20	Multifunctional materials for implantable and wearable photonic healthcare devices. Nature Reviews Materials, 2020, 5, 149-165.	23.3	403
21	A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature. Advanced Materials, 2014, 26, 796-804.	11.1	375
22	Materials and structural designs of stretchable conductors. Chemical Society Reviews, 2019, 48, 2946-2966.	18.7	367
23	Stretchable, elastic materials and devices for solar energy conversion. Energy and Environmental Science, 2011, 4, 3314.	15.6	356
24	Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nature Communications, 2018, 9, 2740.	5.8	344
25	Artificial multimodal receptors based on ion relaxation dynamics. Science, 2020, 370, 961-965.	6.0	343
26	Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nature Energy, 2022, 7, 94-106.	19.8	336
27	Concentrated mixed cation acetate "water-in-salt―solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy and Environmental Science, 2018, 11, 2876-2883.	15.6	315
28	Effects of Polymer Coatings on Electrodeposited Lithium Metal. Journal of the American Chemical Society, 2018, 140, 11735-11744.	6.6	307
29	High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating. ACS Energy Letters, 2016, 1, 1247-1255.	8.8	281
30	Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nature Electronics, 2018, 1, 183-190.	13.1	263
31	Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nature Communications, 2019, 10, 1164.	5.8	258
32	Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy, 2016, 1, .	19.8	253
33	Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nature Communications, 2019, 10, 5384.	5.8	249
34	3D Porous Spongeâ€Inspired Electrode for Stretchable Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 3578-3583.	11.1	247
35	A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability. Journal of the American Chemical Society, 2020, 142, 7393-7403.	6.6	225
36	Ionically Conductive Selfâ€Healing Binder for Low Cost Si Microparticles Anodes in Liâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1703138.	10.2	224

#	Article	IF	CITATIONS
37	Stretchable electrochemical energy storage devices. Chemical Society Reviews, 2020, 49, 4466-4495.	18.7	209
38	Highâ€Arealâ€Capacity Silicon Electrodes with Lowâ€Cost Silicon Particles Based on Spatial Control of Selfâ€Healing Binder. Advanced Energy Materials, 2015, 5, 1401826.	10.2	207
39	Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery. Journal of the American Chemical Society, 2021, 143, 18703-18713.	6.6	205
40	A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Selfâ€Healing Elastic Polymer. Advanced Materials, 2016, 28, 2455-2461.	11,1	197
41	Liquid electrolyte: The nexus of practical lithium metal batteries. Joule, 2022, 6, 588-616.	11.7	191
42	Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science, 2022, 375, 66-70.	6.0	183
43	Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte. Advanced Energy Materials, 2018, 8, 1800703.	10.2	177
44	Polymers in Lithiumâ€lon and Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003239.	10.2	160
45	Stretchable Lithiumâ€Ion Batteries Enabled by Deviceâ€Scaled Wavy Structure and Elasticâ€Sticky Separator. Advanced Energy Materials, 2017, 7, 1701076.	10.2	158
46	Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nature Materials, 2022, 21, 445-454.	13.3	155
47	Tortuosity Effects in Lithium-Metal Host Anodes. Joule, 2020, 4, 938-952.	11.7	150
48	Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Science Advances, 2021, 7, .	4.7	144
49	Enabling Deformable and Stretchable Batteries. Advanced Energy Materials, 2020, 10, 2001424.	10.2	136
50	Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes. Cell Reports Physical Science, 2020, 1, 100119.	2.8	133
51	A Dual rosslinking Design for Resilient Lithiumâ€ l on Conductors. Advanced Materials, 2018, 30, e1804142.	11.1	128
52	Stretchable and ultraflexible organic electronics. MRS Bulletin, 2017, 42, 93-97.	1.7	125
53	Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nature Energy, 2021, 6, 487-494.	19.8	124
54	Dualâ€ S olvent Liâ€ion Solvation Enables Highâ€Performance Liâ€Metal Batteries. Advanced Materials, 2021, 33, e2008619.	11.1	123

#	Article	IF	CITATIONS
55	Bring on the bodyNET. Nature, 2017, 549, 328-330.	13.7	121
56	A design strategy for high mobility stretchable polymer semiconductors. Nature Communications, 2021, 12, 3572.	5.8	94
57	The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes. ACS Applied Materials & Interfaces, 2016, 8, 2318-2324.	4.0	90
58	Nonpolar Alkanes Modify Lithiumâ€lon Solvation for Improved Lithium Deposition and Stripping. Advanced Energy Materials, 2019, 9, 1902116.	10.2	86
59	Biomimetic Impact Protective Supramolecular Polymeric Materials Enabled by Quadruple H-Bonding. Journal of the American Chemical Society, 2021, 143, 1162-1170.	6.6	85
60	Electrode Design with Integration of High Tortuosity and Sulfur-Philicity for High-Performance Lithium-Sulfur Battery. Matter, 2020, 2, 1605-1620.	5.0	83
61	Potentiometric Measurement to Probe Solvation Energy and Its Correlation to Lithium Battery Cyclability. Journal of the American Chemical Society, 2021, 143, 10301-10308.	6.6	83
62	Highâ€Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology. Advanced Electronic Materials, 2019, 5, 1900347.	2.6	70
63	A Cation-Tethered Flowable Polymeric Interface for Enabling Stable Deposition of Metallic Lithium. Journal of the American Chemical Society, 2020, 142, 21393-21403.	6.6	65
64	A Design Strategy for Intrinsically Stretchable High-Performance Polymer Semiconductors: Incorporating Conjugated Rigid Fused-Rings with Bulky Side Groups. Journal of the American Chemical Society, 2021, 143, 11679-11689.	6.6	65
65	F4â€TCNQ as an Additive to Impart Stretchable Semiconductors with High Mobility and Stability. Advanced Electronic Materials, 2020, 6, 2000251.	2.6	54
66	Assembly of Viral Hydrogels for Threeâ€Ðimensional Conducting Nanocomposites. Advanced Materials, 2014, 26, 5101-5107.	11.1	49
67	Efficient Lithium Metal Cycling over a Wide Range of Pressures from an Anion-Derived Solid-Electrolyte Interphase Framework. ACS Energy Letters, 2021, 6, 816-825.	8.8	46
68	An X-ray Photoelectron Spectroscopy Primer for Solid Electrolyte Interphase Characterization in Lithium Metal Anodes. ACS Energy Letters, 2022, 7, 2540-2546.	8.8	46
69	Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte. Energy and Environmental Science, 2020, 13, 4312-4321.	15.6	43
70	Reprocessable and Recyclable Polymer Network Electrolytes via Incorporation of Dynamic Covalent Bonds. Chemistry of Materials, 2022, 34, 2393-2399.	3.2	43
71	Effects of Polymer Coating Mechanics at Solidâ€Electrolyte Interphase for Stabilizing Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	30
72	Interfacial Speciation Determines Interfacial Chemistry: Xâ€rayâ€Induced Lithium Fluoride Formation from Waterâ€inâ€salt Electrolytes on Solid Surfaces. Angewandte Chemie - International Edition, 2020, 59, 23180-23187.	7.2	28

#	Article	IF	CITATIONS
73	Tuning Fluorination of Linear Carbonate for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 040555.	1.3	24
74	Enhanced Cycling Stability of Sulfur Electrodes through Effective Binding of Pyridine-Functionalized Polymer. ACS Energy Letters, 2017, 2, 2454-2462.	8.8	23
75	Interfacial Speciation Determines Interfacial Chemistry: Xâ€rayâ€Induced Lithium Fluoride Formation from Waterâ€inâ€salt Electrolytes on Solid Surfaces. Angewandte Chemie, 2020, 132, 23380-23387.	1.6	9
76	Analysis of Photothermal Release of Oligonucleotides from Hollow Gold Nanospheres by Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2016, 120, 20677-20683.	1.5	6
77	Development of a Software-In-The-Loop Model for a Parallel Plug-In Hybrid Electric Vehicle. , 0, , .		3
	6 / · · · · · · · · · · · · · · · · · ·		