Takayuki Doi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7699076/publications.pdf

Version: 2024-02-01

44 papers 1,283 citations

³⁹⁴⁴²¹ 19 h-index 35 g-index

44 all docs

44 docs citations

times ranked

44

1845 citing authors

#	Article	IF	CITATIONS
1	Predictive Characterization of SEI Formed on Graphite Negative Electrodes for Efficiently Designing Effective Electrolyte Solutions. ACS Applied Energy Materials, 2022, 5, 1085-1094.	5.1	4
2	Quantitative Analysis of Solid Electrolyte Interphase and Its Correlation with The Electrochemical Performance of Lithium Ion Batteries Using Concentrated LiPF ₆ /propylene Carbonate. Journal of the Electrochemical Society, 2021, 168, 020530.	2.9	15
3	Nonâ€Flammable and Highly Concentrated Carbonate Esterâ€Free Electrolyte Solutions for 5 Vâ€Class Positive Electrodes in Lithiumâ€Ion Batteries. ChemSusChem, 2021, 14, 2445-2451.	6.8	9
4	Improved stability of highly concentrated LiBF4/fluorinated ethyl acetate-based electrolyte solutions with a co-solvent for LiNi0.8Co0.1Mn0.1O2 positive electrodes in lithium ion batteries. Journal of Applied Electrochemistry, 2021, 51, 1535.	2.9	3
5	Physicochemical Features of Fluorinated Ethyl Acetate-Based Highly Concentrated Electrolyte Solutions and Their Effects on Electrochemical Properties of LiNi0.8Co0.1Mn0.1O2 Positive Electrodes. Journal of Physical Chemistry C, 2021, 125, 12578-12584.	3.1	6
6	Lithium-ion battery performance enhanced by the combination of Si thin flake anodes and binary ionic liquid systems. Materials Advances, 2020, 1, 625-631.	5.4	9
7	Dilution Effects of Highly Concentrated LiBF ₄ /DMC with Fluorinated Esters on Charge/Dishcharge Properties of Ni-rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Positive Electrode. Journal of the Electrochemical Society, 2020, 167, 040508.	2.9	2
8	Improvement of Cycleability and Rateâ€Capability of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Materials Coated with Lithium Boron Oxide by an Antisolvent Precipitation Method. ChemistrySelect, 2019, 4, 8676-8681.	1.5	14
9	Extension of Anodic Potential Window of Ester-Based Electrolyte Solutions for High-Voltage Lithium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 7728-7732.	5.1	8
10	Hard X-ray Photoelectron Spectroscopy Analysis of Surface Chemistry of Spray Pyrolyzed LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Positive Electrode Coated with Lithium Boron Oxide. Electrochemistry, 2019, 87, 357-364.	1.4	4
11	Effect of Lithium Silicate Addition on the Microstructure and Crack Formation of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Particles. ACS Applied Materials & Discrete Subsequence (19, 11, 39910-39920).	8.0	23
12	Oxygen-Content Dependence of Cycle Performance and Morphology Changes in Amorphous-SiO <i>_x</i> Thin-Film Negative Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A258-A263.	2.9	19
13	Communication—Enhancement of Structural Stability of LiNi0.5Co0.2Mn0.3O2 Cathode Particles against High-Voltage Cycling by Lithium Silicate Addition. Journal of the Electrochemical Society, 2019, 166, A941-A943.	2.9	5
14	Dilution Effects of Highly Concentrated Dimethyl Carbonate-Based Electrolytes with a Hydrofluoroether on Charge/Discharge Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Positive Electrode. Journal of the Electrochemical Society, 2019, 166, A4005-A4013.	2.9	10
15	Improved Cycle Performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Positive Electrode Material in Highly Concentrated LiBF ₄ /DMC. Journal of the Electrochemical Society, 2019, 166, A82-A88.	2.9	40
16	Fluoroalkyl ether-diluted dimethyl carbonate-based electrolyte solutions for high-voltage operation of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ electrodes in lithium ion batteries. Sustainable Energy and Fuels, 2018, 2, 1197-1205.	4.9	22
17	Morphology changes and long-term cycling durability of Si flake powder negative electrode for lithium-ion batteries. Electrochimica Acta, 2018, 267, 94-101.	5.2	22
18	Solvation-controlled ester-based concentrated electrolyte solutions for high-voltage lithium-ion batteries. Current Opinion in Electrochemistry, 2018, 9, 49-55.	4.8	17

#	Article	lF	CITATIONS
19	Enhancement of Oxygen Reduction Reaction Activity of Pd Core-Pt Shell Structured Catalyst on a Potential Cycling Accelerated Durability Test. Electrocatalysis, 2018, 9, 125-138.	3.0	16
20	Influence of lithium silicate coating on retarding crack formation in LiNi0.5Co0.2Mn0.3O2 cathode particles. Electrochimica Acta, 2018, 291, 304-310.	5.2	23
21	Artificial lithium fluoride surface coating on silicon negative electrodes for the inhibition of electrolyte decomposition in lithium-ion batteries: visualization of a solid electrolyte interphase using <i>in situ</i>	5.6	35
22	Dilution of Highly Concentrated LiBF ₄ /Propylene Carbonate Electrolyte Solution with Fluoroalkyl Ethers for 5-V LiNi _{0.5} Mn _{1.5} O ₄ Positive Electrodes. Journal of the Electrochemical Society, 2017, 164, A6412-A6416.	2.9	110
23	Lowâ€Viscosity γâ€Butyrolactoneâ€Based Concentrated Electrolyte Solutions for LiNi _{0.5} Mn _{1.5} O ₄ Positive Electrodes in Lithiumâ€lon Batteries. ChemElectroChem, 2017, 4, 2398-2403.	3.4	22
24	Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives. Electrochimica Acta, 2017, 224, 186-193.	5.2	68
25	Suppression of Mn-Ion-Dissolution of LiNi _{0.5} Mn _{1.5} O ₄ Electrodes in a Highly Concentrated Electrolyte Solution at Elevated Temperatures. ChemistrySelect, 2017, 2, 8824-8827.	1.5	16
26	Silicon Nano-flake Powder as an Anode for The Next Generation Lithium-ion Batteries: Current Status and Challenges. Electrochemistry, 2017, 85, 623-629.	1.4	14
27	High Rate Charge and Discharge Characteristics of Graphite/SiO <i>_xx</i> Composite Electrodes. Electrochemistry, 2017, 85, 403-408.	1.4	5
28	Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries. Electrochimica Acta, 2016, 209, 219-224.	5.2	75
29	LiBF ₄ -Based Concentrated Electrolyte Solutions for Suppression of Electrolyte Decomposition and Rapid Lithium-Ion Transfer at LiNi _{0.5} Mn _{1.5} O ₄ /Electrolyte Interface. Journal of the Electrochemical Society, 2016, 163, A2211-A2215.	2.9	52
30	In situ Scanning Electron Microscopy of Silicon Anode Reactions in Lithium-Ion Batteries during Charge/Discharge Processes. Scientific Reports, 2016, 6, 36153.	3.3	65
31	Suppression of Manganese-ion Dissolution by SiO ₂ Aerosol Addition from Spray Pyrolyzed Li ₂ MnO ₃ -LiMn _{1/3} Ni _{1/3} Co _{1/3} O ₂ . Electrochemistry, 2016, 84, 842-847.	1.4	3
32	Si/Li ₂ S Battery with Solvate Ionic Liquid Electrolyte. Electrochemistry, 2016, 84, 887-890.	1.4	27
33	Cycle Performances of Si-flake-powder Anodes in Lithium Salt-tetraglyme Complex Electrolytes. Electrochemistry, 2015, 83, 837-839.	1.4	15
34	Preparation and Charge/Discharge Characteristics of Carbon-modified Ramsdellite TiO ₂ as a High Potential Anode. Electrochemistry, 2015, 83, 867-869.	1.4	1
35	Toward "rocking-chair type―Mg–Li dual-salt batteries. Journal of Materials Chemistry A, 2015, 3, 10188-10194.	10.3	72
36	A concept of dual-salt polyvalent-metal storage battery. Journal of Materials Chemistry A, 2014, 2, 1144-1149.	10.3	133

Τακαγυκι Doi

#	Article	IF	CITATION
37	Oxygen Diffusion and Dissolution Rates in Sulfonated Polyetheretherketone Copolymer Thin Film Electrolyte Formed on Pt Microelectrode. ECS Meeting Abstracts, 2014, , .	0.0	O
38	What determines the critical size for phase separation in LiFePO4 in lithium ion batteries?. Journal of Materials Chemistry A, 2013, 1, 14532.	10.3	18
39	Influence of Manganese Dissolution on the Degradation of Surface Films on Edge Plane Graphite Negative-Electrodes in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A961-A966.	2.9	109
40	In Situ AFM Study of Surface Film Formation on the Edge Plane of HOPG for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 25484-25489.	3.1	84
41	Single-Step Synthesis of Nanosized Titanium-Based Oxide/Carbon Nanotube Composites by Electrospray Deposition and Their Electrochemical Properties. Journal of Physical Chemistry C, 2009, 113, 7719-7722.	3.1	15
42	Lithium-Ion Transfer at an Electrolyte/Heat-Treated Nongraphitizable Carbon Electrode Interface. Journal of the Electrochemical Society, 2005, 152, A1521.	2.9	25
43	Pulse Voltammetric and ac Impedance Spectroscopic Studies on Lithium Ion Transfer at an Electrolyte/Li4/3Ti5/3O4 Electrode Interface. Analytical Chemistry, 2005, 77, 1696-1700.	6.5	44
44	How is the concentration determined for rapid lithium ion transfer in highly concentrated electrolyte solutions?. Electrochemical Science Advances, 0, , e2100058.	2.8	4