Salvatore Straface

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7698922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	History, Socioeconomic Problems and Environmental Impacts of Gold Mining in the Andean Region of Ecuador. International Journal of Environmental Research and Public Health, 2022, 19, 1190.	2.6	8
2	Cold Mining in the Amazon Region of Ecuador: History and a Review of Its Socio-Environmental Impacts. Land, 2022, 11, 221.	2.9	30
3	Inclined Physical Subsurface Barriers for Saltwater Intrusion Management in Coastal Aquifers. Water Resources Management, 2022, 36, 2973-2987.	3.9	10
4	Artisanal and Small-Scale Gold Mining (ASGM): Management and Socioenvironmental Impacts in the Northern Amazon of Ecuador. Sustainability, 2022, 14, 6854.	3.2	10
5	OpenCAL system extension and application to the three-dimensional Richards equation for unsaturated flow. Computers and Mathematics With Applications, 2021, 81, 133-158.	2.7	18
6	LLUNPIY Simulations of the 1877 Northward Catastrophic Lahars of Cotopaxi Volcano (Ecuador) for a Contribution to Forecasting the Hazards. Geosciences (Switzerland), 2021, 11, 81.	2.2	2
7	Membrane technology for a sustainable copper mining industry: The Chilean paradigm. Cleaner Engineering and Technology, 2021, 2, 100091.	4.0	15
8	Asynchronous cellular automata subsurface flow simulations in two- and three-dimensional heterogeneous soils. Advances in Water Resources, 2021, 153, 103952.	3.8	13
9	Gold mining in Ecuador: Innovative recommendations for the management and remediation of mercury-contaminated waters. Green World Journal, 2021, 4, 11.	0.2	4
10	Effects of groundwater abstraction and desalination brine deep injection on a coastal aquifer. Science of the Total Environment, 2021, 795, 148928.	8.0	22
11	History, Current Situation and Challenges of Gold Mining in Ecuador's Litoral Region. Land, 2021, 10, 1220.	2.9	11
12	Groundwater pollution assessment in landfill areas: Is it only about the leachate?. Waste Management, 2020, 102, 655-666.	7.4	18
13	Modelling phosphorus removal efficiency of a reactive filter treating agricultural tile drainage water. Ecological Engineering, 2020, 156, 105968.	3.6	11
14	Linking mean pore velocity and dispersivity to pore velocity distribution by advection–dispersion and stream tube modeling. Environmental Fluid Mechanics, 2020, 20, 1617-1636.	1.6	0
15	GuEstNBL: The Software for the Guided Estimation of the Natural Background Levels of the Aquifers. Water (Switzerland), 2020, 12, 2728.	2.7	6
16	From examination of natural events to a proposal for risk mitigation of lahars by a cellular-automata methodology: a case study for Vascún valley, Ecuador. Natural Hazards and Earth System Sciences, 2020, 20, 1-20.	3.6	11
17	Preliminary Model of Saturated Flow Using Cellular Automata. Lecture Notes in Computer Science, 2020, , 256-268.	1.3	3
18	A General Computational Formalism for Networks of Structured Grids. Lecture Notes in Computer Science, 2020, , 243-255.	1.3	0

SALVATORE STRAFACE

#	Article	IF	CITATIONS
19	The Quantization Algorithm Impact in Hydrological Applications: Preliminary Results. Lecture Notes in Computer Science, 2020, , 191-204.	1.3	1
20	Effects of climate change on the design of subsurface drainage systems in coastal aquifers in arid/semi-arid regions: Case study of the Nile delta. Science of the Total Environment, 2019, 672, 283-295.	8.0	38
21	Integrated Modelling for Groundwater Contamination from Polluted Streams Using New Protection Process Techniques. Water (Switzerland), 2019, 11, 2321.	2.7	33
22	Hydrogeological modeling of the groundwater recharge feeding the Chambo aquifer, Ecuador. AIP Conference Proceedings, 2018, , .	0.4	9
23	Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions. Chemosphere, 2017, 180, 11-23.	8.2	87
24	Soil Electrical Resistivity for Spatial Sampling Design, Prediction, and Uncertainty Modeling of Soil Moisture. Vadose Zone Journal, 2017, 16, 1-14.	2.2	11
25	Accelerating a three-dimensional eco-hydrological cellular automaton on GPGPU with OpenCL. AIP Conference Proceedings, 2016, , .	0.4	2
26	Relating Non-equilibrium Solute Transport and Porous Media Physical Characteristics. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	6
27	Hydrodynamic parameters estimation from self-potential data in a controlled full scale site. Journal of Hydrology, 2015, 522, 572-581.	5.4	12
28	Assessment of natural background levels in potentially contaminated coastal aquifers. Science of the Total Environment, 2014, 476-477, 38-48.	8.0	21
29	Estimation of longitudinal dispersivity in a porous medium using self-potential signals. Journal of Hydrology, 2013, 505, 163-171.	5.4	9
30	Arsenic release from deep natural solid matrices under experimentally controlled redox conditions. Science of the Total Environment, 2013, 444, 231-240.	8.0	43
31	Gas–Solute Dispersivity Ratio in Granular Porous Media as Related to Particle Size Distribution and Particle Shape. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	3
32	Relating solute and Gas Dispersion in Granite at Different Transport Velocities. , 2013, , .		1
33	A Comparison of deterministic and probabilistic approaches for assessing risks from contaminated aquifers: An Italian case study. Waste Management and Research, 2013, 31, 1245-1254.	3.9	18
34	Relating solute and gas dispersion in gravel at different transport velocities. , 2013, , .		0
35	Scaling Effect of the Hydraulic Conductivity in a Confined Aquifer. Soil Science, 2012, 177, 385-391.	0.9	20
36	Joint inversion of steady-state hydrologic and self-potential data for 3D hydraulic conductivity distribution at the Boise Hydrogeophysical Research Site. Journal of Hydrology, 2011, 407, 115-128.	5.4	29

SALVATORE STRAFACE

#	Article	IF	CITATIONS
37	Stochastic characterization of the Montalto Uffugo research site (Italy) by geostatistical inversion of moment equations of groundwater flow. Journal of Hydrology, 2010, 381, 42-51.	5.4	11
38	Estimation of hydraulic conductivity and water table map in a largeâ€scale laboratory model by means of the selfâ€potential method. Journal of Geophysical Research, 2010, 115, .	3.3	19
39	Estimation of transmissivity and storage coefficient by means of a derivative method using the early-time drawdown. Hydrogeology Journal, 2009, 17, 1679-1686.	2.1	14
40	Reconstruction of the Water Table from Selfâ€Potential Data: A Bayesian Approach. Ground Water, 2009, 47, 213-227.	1.3	75
41	A Potentialâ€Based Inversion of Unconfined Steadyâ€State Hydraulic Tomography. Ground Water, 2009, 47, 259-270.	1.3	108
42	Cellular automata modeling of environmental systems. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 27-60.	0.2	0
43	Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy. Water Resources Research, 2007, 43, .	4.2	102
44	An Inverse Procedure to Estimate Transmissivity from Heads and SP Signals. Ground Water, 2007, 45, 420-428.	1.3	46
45	Three-dimensional unsaturated flow modeling using cellular automata. Water Resources Research, 2006, 42, .	4.2	39
46	A model based on cellular automata for the parallel simulation of 3D unsaturated flow. Parallel Computing, 2006, 32, 357-376.	2.1	38
47	Numerical modelling of self-potential signals associated with a pumping test experiment. Geophysical Journal International, 2005, 162, 641-650.	2.4	75
48	Self-potential signals associated with pumping tests experiments. Journal of Geophysical Research, 2004, 109, .	3.3	124
49	Application of kriging with external drift to estimate hydraulic conductivity from electrical-resistivity data in unconsolidated deposits near Montalto Uffugo, Italy. Hydrogeology Journal, 2000, 8, 356-367.	2.1	40