Maruooeda Yolanda Gogorcena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7698838/publications.pdf

Version: 2024-02-01

84 papers 3,797 citations

87723 38 h-index 58 g-index

86 all docs 86 does citations

86 times ranked 3178 citing authors

#	Article	lF	Citations
1	Tuning promoter boundaries improves regulatory motif discovery in nonmodel plants: the peach example. Plant Physiology, 2021, 185, 1242-1258.	2.3	25
2	Association analysis and molecular tagging of phytochemicals in the endangered medicinal plant licorice (Glycyrrhiza glabra L.). Phytochemistry, 2021, 183, 112629.	1.4	11
3	Beneficial effect of mycorrhiza on nutritional uptake and oxidative balance in pistachio (Pistacia spp.) rootstocks submitted to drought and salinity stress. Scientia Horticulturae, 2021, 281, 109937.	1.7	23
4	Assessment of Nutritional and Quality Properties of Leaves and Musts in Three Local Spanish Grapevine Varieties Undergoing Controlled Climate Change Scenarios. Plants, 2021, 10, 1198.	1.6	3
5	Molecular, Physico-Chemical, and Sensory Characterization of the Traditional Spanish Apple Variety "Pero de CehegÃn― Agronomy, 2020, 10, 1093.	1.3	1
6	Simple Sequence Repeat Characterisation of Traditional Apple Cultivars (Malus domestica Borkh.) Grown in the Region of Madrid (Central Spain). Plant Molecular Biology Reporter, 2020, 38, 676-690.	1.0	5
7	Is the Tolerance of Commercial Peach Cultivars to Brown Rot Caused by Monilinia laxa Modulated by its Antioxidant Content?. Plants, 2020, 9, 589.	1.6	6
8	Interactional Effects of Climate Change Factors on the Water Status, Photosynthetic Rate, and Metabolic Regulation in Peach. Frontiers in Plant Science, 2020, 11, 43.	1.7	23
9	Genomic-Based Breeding for Climate-Smart Peach Varieties. , 2020, , 271-331.		11
10	Breeding strategies for identifying superior peach genotypes resistant to brown rot. Scientia Horticulturae, 2019, 246, 1028-1036.	1.7	15
11	Peach Brown Rot: Still in Search of an Ideal Management Option. Agriculture (Switzerland), 2018, 8, 125.	1.4	44
12	Parrel, vinÃfera aragonesa de la depresión del Ebro. Adaptación a terroir semiáridos de cultivo E3S Web of Conferences, 2018, 50, 01045.	0.2	0
13	Effects of pH and titratable acidity on the growth and development of Monilinia laxa (Aderh. & Derivative 1) Tj ETQq 1 1 ().784314 0.8	rgBT /Overlo
14	Optimizing protocols to evaluate brown rot (Monilinia laxa) susceptibility in peach and nectarine fruits. Australasian Plant Pathology, 2017, 46, 183-189.	0.5	15
15	Phenolic, sugar and acid profiles and the antioxidant composition in the peel and pulp of peach fruits. Journal of Food Composition and Analysis, 2017, 62, 126-133.	1.9	78
16	Responsiveness of Durum Wheat to Mycorrhizal Inoculation Under Different Environmental Scenarios. Journal of Plant Growth Regulation, 2017, 36, 855-867.	2.8	6
17	Analysis of the genetic diversity and structure of the Spanish apple genetic resources suggests the existence of an Iberian genepool. Annals of Applied Biology, 2017, 171, 424-440.	1.3	31
18	Transcriptional Responses in Root and Leaf of Prunus persica under Drought Stress Using RNA Sequencing. Frontiers in Plant Science, 2016, 7, 1715.	1.7	58

2

#	Article	IF	CITATIONS
19	Mapping QTLs associated with fruit quality traits in peach [Prunus persica (L.) Batsch] using SNP maps. Tree Genetics and Genomes, 2016 , 12 , 1 .	0.6	60
20	Pearl millet growth and biochemical alterations determined by mycorrhizal inoculation, water availability and atmospheric CO2 concentration. Crop and Pasture Science, 2015, 66, 831.	0.7	20
21	Phenotypic diversity of Spanish apple (Malus x domestica Borkh) accessions grown at the vulnerable climatic conditions of the Ebro Valley, Spain. Scientia Horticulturae, 2015, 185, 200-210.	1.7	12
22	Influence of antioxidant compounds, total sugars and genetic background on the chilling injury susceptibility of a nonâ€melting peach (<i>Prunus persica</i> (L.) Batsch) progeny. Journal of the Science of Food and Agriculture, 2015, 95, 351-358.	1.7	51
23	Agronomical Parameters, Sugar Profile and Antioxidant Compounds of "Catherine―Peach Cultivar Influenced by Different Plum Rootstocks. International Journal of Molecular Sciences, 2014, 15, 2237-2254.	1.8	33
24	Changes in alfalfa forage quality and stem carbohydrates induced by arbuscular mycorrhizal fungi and elevated atmospheric CO ₂ . Annals of Applied Biology, 2014, 164, 190-199.	1.3	52
25	Phenotypic diversity among local Spanish and foreign peach and nectarine [Prunus persica (L.) Batsch] accessions. Euphytica, 2014, 197, 261-277.	0.6	48
26	Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiology, 2013, 33, 1061-1075.	1.4	132
27	Population structure and marker–trait associations for pomological traits in peach and nectarine cultivars. Tree Genetics and Genomes, 2013, 9, 331-349.	0.6	65
28	Changes Induced by Fe Deficiency and Fe Resupply in the Root Protein Profile of a Peach-Almond Hybrid Rootstock. Journal of Proteome Research, 2013, 12, 1162-1172.	1.8	22
29	Fruit sugar profile and antioxidants of peach and nectarine cultivars on almond×peach hybrid rootstocks. Scientia Horticulturae, 2013, 164, 563-572.	1.7	27
30	Genetic analysis of iron chlorosis tolerance in Prunus rootstocks. Tree Genetics and Genomes, 2012, 8, 943-955.	0.6	9
31	Two Fe-superoxide dismutase families respond differently to stress and senescence in legumes. Journal of Plant Physiology, 2012, 169, 1253-1260.	1.6	38
32	Agronomical and fruit quality traits of two peach cultivars on peach-almond hybrid rootstocks growing on Mediterranean conditions. Scientia Horticulturae, 2012, 140, 157-163.	1.7	41
33	Effects of nitrogen source and water availability on stem carbohydrates and cellulosic bioethanol traits of alfalfa plants. Plant Science, 2012, 191-192, 16-23.	1.7	12
34	Development of an SSR-based identification key for Tunisian local almonds. Scientia Agricola, 2012, 69, 108-113.	0.6	12
35	Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis. Journal of Plant Physiology, 2011, 168, 415-423.	1.6	58
36	Physiological responses and differential gene expression in Prunus rootstocks under iron deficiency conditions. Journal of Plant Physiology, 2011, 168, 887-893.	1.6	37

#	Article	IF	CITATIONS
37	Performance of peach and plum based rootstocks of different vigour on a late peach cultivar in replant and calcareous conditions. Scientia Horticulturae, 2011, 129, 58-63.	1.7	36
38	Morphological and molecular variability in some Iranian almond genotypes and related Prunus species and their potentials for rootstock breeding. Scientia Horticulturae, 2011, 129, 108-118.	1.7	32
39	Genetic variability of introduced and local Spanish peach cultivars determined by SSR markers. Tree Genetics and Genomes, 2011, 7, 257-270.	0.6	30
40	Effects of cadmium on cork oak (Quercus suber L.) plants grown in hydroponics. Tree Physiology, 2011, 31, 1401-1412.	1.4	23
41	Evaluation of Antioxidant Compounds and Total Sugar Content in a Nectarine [Prunus persica (L.) Batsch] Progeny. International Journal of Molecular Sciences, 2011, 12, 6919-6935.	1.8	63
42	Phenotypic diversity and relationships of fruit quality traits in peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. Euphytica, 2010, 171, 211.	0.6	87
43	Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biology and Technology, 2010, 58, 79-87.	2.9	86
44	Assessment of genetic diversity and relatedness among Tunisian almond germplasm using SSR markers. Hereditas, 2010, 147, 283-292.	0.5	25
45	Preservation and Molecular Characterization of Ancient Varieties in Spanish Grapevine Germplasm Collections. American Journal of Enology and Viticulture, 2010, 61, 557-562.	0.9	11
46	Growth, yield and fruit quality of †Van' and †Stark Hardy Giant' sweet cherry cultivars as influenced by grafting on different rootstocks. Scientia Horticulturae, 2010, 123, 329-335.	1.7	50
47	Changes in Cell/Tissue Organization and Peroxidase Activity as Markers for Early Detection of Graft Incompatibility in Peach/Plum Combinations. Journal of the American Society for Horticultural Science, 2010, 135, 9-17.	0.5	55
48	Analysis of phenotypic variation of sugar profile in different peach and nectarine [<i>Prunus persica</i> (L.) Batsch] breeding progenies. Journal of the Science of Food and Agriculture, 2009, 89, 1909-1917.	1.7	73
49	Elemental 2-D mapping and changes in leaf iron and chlorophyll in response to iron re-supply in iron-deficient GF 677 peach-almond hybrid. Plant and Soil, 2009, 315, 93-106.	1.8	38
50	Molecular characterization and genetic diversity of Prunus rootstocks. Scientia Horticulturae, 2009, 120, 237-245.	1.7	36
51	Metabolic responses in iron deficient tomato plants. Journal of Plant Physiology, 2009, 166, 375-384.	1.6	108
52	Evaluation of the Antioxidant Capacity, Phenolic Compounds, and Vitamin C Content of Different Peach and Nectarine [Prunus persica (L.) Batsch] Breeding Progenies. Journal of Agricultural and Food Chemistry, 2009, 57, 4586-4592.	2.4	174
53	Tolerance Response to Iron Chlorosis of Prunus Selections as Rootstocks. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 304-309.	0.5	60
54	Molecular characterization of Miraflores peach variety and relatives using SSRs. Scientia Horticulturae, 2007, 111, 140-145.	1.7	24

#	Article	IF	CITATIONS
55	Influence of different vigour cherry rootstocks on leaves and shoots mineral composition. Scientia Horticulturae, 2007, 112, 73-79.	1.7	84
56	Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes of Vitis. Plant and Soil, 2007, 290, 343-355.	1.8	52
57	Chloroplast DNA Diversity in Prunus and Its Implication on Genetic Relationships. Journal of the American Society for Horticultural Science, 2007, 132, 670-679.	0.5	35
58	Graft Compatibility Between Peach Cultivars and Prunus Rootstocks. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 1389-1394.	0.5	54
59	Iron deficiency-induced changes in carbon fixation and leaf elemental composition of sugar beet (Beta) Tj ETQq1 1	0.784314	4 ₄ gBT /Ove
60	Influence of almond \tilde{A} — peach hybrids rootstocks on flower and leaf mineral concentration, yield and vigour of two peach cultivars. Scientia Horticulturae, 2005, 106, 502-514.	1.7	96
61	A New Technique for Screening Iron-Efficient Genotypes in Peach Rootstocks: Elicitation of Root Ferric Chelate Reductase by Manipulation of External Iron Concentrations. Journal of Plant Nutrition, 2005, 27, 1701-1715.	0.9	45
62	Flower and Foliar Analysis for Prognosis of Sweet Cherry Nutrition: Influence of Different Rootstocks. Journal of Plant Nutrition, 2004, 27, 701-712.	0.9	50
63	Dynamics of metabolic responses to iron deficiency in sugar beet roots. Plant Science, 2004, 166, 1045-1050.	1.7	47
64	Effects of cadmium and lead on ferric chelate reductase activities in sugar beet roots. Plant Physiology and Biochemistry, 2003, 41, 999-1005.	2.8	52
65	Effects of Cd and Pb in sugar beet plants grown in nutrient solution: induced Fe deficiency and growth inhibition. Functional Plant Biology, 2002, 29, 1453.	1.1	115
66	Use of molecular markers in detection of synonymies and homonymies in grapevines (Vitis vinifera L.). Scientia Horticulturae, 2002, 92, 241-254.	1.7	32
67	Technical Advance: Reduction of Fe(III)-Chelates by Mesophyll LeafDisks of Sugar Beet. Multi-Component Origin and Effects of FeDeficiency. Plant and Cell Physiology, 2001, 42, 94-105.	1.5	57
68	Iron resupply-mediated deactivation of Fe-deficiency stress responses in roots of sugar beet. Functional Plant Biology, 2001, 28, 171.	1.1	9
69	Induction of <i>in vivo </i> root ferric chelate reductase activity in fruit tree rootstock. Journal of Plant Nutrition, 2000, 23, 9-21.	0.9	53
70	Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use. Plant Physiology, 2000, 124, 885-898.	2.3	157
71	N2 Fixation, Carbon Metabolism, and Oxidative Damage in Nodules of Dark-Stressed Common Bean Plants. Plant Physiology, 1997, 113, 1193-1201.	2.3	107
72	The use of isoenzymes in characterization of grapevines (Vitis vinifera, L.). Influence of the environment and time of sampling. Scientia Horticulturae, 1997, 69, 145-155.	1.7	23

#	Article	IF	CITATION
73	Involvement of Activated Oxygen in Nitrate-Induced Senescence of Pea Root Nodules. Plant Physiology, 1996, 110, 1187-1195.	2.3	80
74	Activated oxygen and antioxidant defences in iron-deficient pea plants. Plant, Cell and Environment, 1995, 18, 421-429.	2.8	124
75	Antioxidant Defenses against Activated Oxygen in Pea Nodules Subjected to Water Stress. Plant Physiology, 1995, 108, 753-759.	2.3	177
76	The use of RAPD markers for identification of cultivated grapevine (Vitis vinifera L.). Scientia Horticulturae, 1995, 62, 237-243.	1.7	48
77	Evaluation of RAPD marker consistency for detection of polymorphism in apricot. Scientia Horticulturae, 1994, 59, 163-167.	1.7	26
78	Recovery of whole plants of sweet orange from somatic embryos subjected to freezing thawing treatments. Plant Cell, Tissue and Organ Culture, 1993, 34, 27-33.	1.2	23
79	Use of multivariate analysis in the taxonomy of Citrus aurantium L. and relatives. Scientia Horticulturae, 1993, 53, 301-310.	1.7	7
80	Comparative electrophoretic studies of seed proteins in some species of the genera Diplotaxis, Erucastrum, and Brassica (Cruciferae: Brassiceae). Taxon, 1992, 41, 477-483.	0.4	22
81	Morphogenesis and tissue culture of sweet orange (Citrus sinensis (L.) Osb.): Effect of temperature and photosynthetic radiation. Plant Cell, Tissue and Organ Culture, 1992, 29, 11-18.	1.2	36
82	Identification of mandarin hybrids with the aid of isozymes from different organs. Scientia Horticulturae, 1990, 41, 285-291.	1.7	2
83	Characterisation of sour orange (Citrus aurantium) cultivars. Journal of the Science of Food and Agriculture, 1989, 48, 275-284.	1.7	8
84	Nitrogen Fixation and Leghemoglobin Content during Vegetative Growth of Alfalfa. Journal of Plant Physiology. 1986, 123, 117-125.	1.6	21