Ricardo Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7698651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caffeine photocatalytic degradation using composites of NiO/TiO2–F and CuO/TiO2–F under UV irradiation. Chemosphere, 2022, 288, 132506.	8.2	22
2	Structural changes and photocatalytic aspects into anatase network after doping with cerium: Comprehensive study via radial distribution functions, electron density maps and molecular hardness. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 428, 113855.	3.9	1
3	Synthesis of Ni/GO-TiO2 composites for the photocatalytic hydrogen production and CO2 reduction to methanol. Topics in Catalysis, 2022, 65, 1015-1027.	2.8	8
4	Effect of Co-catalyst (CuO, CoO or NiO) on Bi2O3–TiO2 Structures and Its Impact on the Photocatalytic Reduction of 4-nitrophenol. Topics in Catalysis, 2021, 64, 112-120.	2.8	8
5	Effective photocatalytic degradation of Rhodamine B using tin semiconductors over hydrotalcite-type materials under sunlight driven. Catalysis Today, 2021, 372, 191-197.	4.4	13
6	ZnS-Bipy hybrid materials for the photocatalytic generation of hydrogen from water. Catalysis Today, 2020, 341, 104-111.	4.4	2
7	Effective phosphated CeO 2 materials in the photocatalytic degradation of phenol under UV irradiation. Journal of Chemical Technology and Biotechnology, 2020, 95, 3213-3220.	3.2	7
8	Effective electron–hole separation over Nâ€doped TiO ₂ materials for improved photocatalytic reduction of 4â€nitrophenol using visible light. Journal of Chemical Technology and Biotechnology, 2020, 95, 2694-2706.	3.2	12
9	Ga ₂ O ₃ /TiO ₂ semiconductors free of noble metals for the photocatalytic hydrogen production in a water/methanol mixture. Journal of Chemical Technology and Biotechnology, 2019, 94, 3457-3465.	3.2	15
10	Hydrogen Production from Aqueous Methanol Solutions Using Ti–Zr Mixed Oxides as Photocatalysts under UV Irradiation. Catalysts, 2019, 9, 938.	3.5	12
11	Synthesis and characterization of ZnZr composites for the photocatalytic degradation of phenolic molecules: addition effect of ZrO ₂ over hydrozincite Zn ₅ (OH) ₆ (CO ₃) ₂ . Journal of Chemical Technology and Biotechnology, 2019, 94, 3428-3439.	3.2	15
12	Heterojunction formation on InVO4/N-TiO2 with enhanced visible light photocatalytic activity for reduction of 4-NP. Materials Science in Semiconductor Processing, 2019, 89, 201-211.	4.0	28
13	Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light. Fuel, 2019, 237, 227-235.	6.4	51
14	Photoreduction of 4-Nitrophenol in the presence of carboxylic acid using CdS nanofibers. Journal of Materials Science: Materials in Electronics, 2018, 29, 7345-7355.	2.2	13
15	Improved photocatalytic hydrogen production from methanol/water solution using CuO supported on fluorinated TiO ₂ . Journal of Chemical Technology and Biotechnology, 2018, 93, 1113-1120.	3.2	26
16	Synthesis of Bi ₂ S ₃ nanorods supported on ZrO ₂ semiconductor as an efficient photocatalyst for hydrogen production under UV and visible light. Journal of Chemical Technology and Biotechnology, 2017, 92, 1503-1510.	3.2	16
17	Efficient ZnO1-xSx composites from the Zn5(CO3)2(OH)6 precursor for the H2 production by photocatalysis. Renewable Energy, 2017, 113, 43-51.	8.9	17
18	Photocatalytic reduction of 4-nitrophenol to 4-aminophenol over CdS/MgAl layered double hydroxide catalysts under UV irradiation. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 625-634.	1.7	8

RICARDO GOMEZ

#	Article	IF	CITATIONS
19	Interfacial charge-transfer process across ZrO2-TiO2 heterojunction and its impact on photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 335, 276-286.	3.9	64
20	Novel preparation of ZnS from Zn5(CO3)2(OH)6 by the hydro- or solvothermal method for H2 production. Catalysis Today, 2017, 287, 91-98.	4.4	21
21	Improving photocatalytic reduction of 4-nitrophenol over ZrO ₂ –TiO ₂ by synergistic interaction between methanol and sulfite ions. New Journal of Chemistry, 2017, 41, 12655-12663.	2.8	24
22	Photocatalytic oxidative esterification of benzaldehyde by V2O5–ZnO catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 1281-1296.	1.7	4
23	Synthesis of CdS/MgAl layered double hydroxides for hydrogen production from methanol-water decomposition. Applied Clay Science, 2017, 136, 67-74.	5.2	29
24	Comparative activity of CdS nanofibers superficially modified by Au, Cu, and Ni nanoparticles as co-catalysts for photocatalytic hydrogen production under visible light. Journal of Chemical Technology and Biotechnology, 2016, 91, 2205-2210.	3.2	27
25	Zn-Ge oxynitride based nano-photocatalyst for hydrogen production under visible light. Materials Research Bulletin, 2016, 83, 603-608.	5.2	8
26	Photocatalytic reduction of 4-nitrophenol on in situ fluorinated sol–gel TiO2 under UV irradiation using Na2SO3 as reducing agent. Journal of Sol-Gel Science and Technology, 2016, 80, 426-435.	2.4	25
27	Blue-photodecomposition of hydrazine in aqueous solution for H ₂ production by using CdS photocatalyst. Journal of Chemical Technology and Biotechnology, 2016, 91, 2179-2184.	3.2	9
28	Suitable preparation of Bi ₂ S ₃ nanorods -TiO ₂ heterojunction semiconductors with improved photocatalytic hydrogen production from water/methanol decomposition. Journal of Chemical Technology and Biotechnology, 2016, 91, 2198-2204.	3.2	26
29	Photocatalytic degradation of phenol using MgAlSn hydrotalcite-like compounds. Applied Clay Science, 2016, 129, 71-78.	5.2	34
30	Enhanced photocatalytic degradation of 4-chlorophenol and 2,4-dichlorophenol on <i>in situ</i> phosphated sol-gel TiO ₂ . Journal of Chemical Technology and Biotechnology, 2016, 91, 2170-2178.	3.2	31
31	Combination of Mn oxidation states improves the photocatalytic degradation of phenol with ZnAl LDH materials without a source of O2 in the reaction system. Catalysis Today, 2016, 266, 62-71.	4.4	20
32	Enhancing the H2 evolution from water–methanol solution using Mn2+–Mn+3–Mn4+ redox species of Mn-doped TiO2 sol–gel photocatalysts. Catalysis Today, 2016, 266, 9-16.	4.4	65
33	Photodegradation of Indigo Carmine dye by CdS nanostructures under blue-light irradiation emitted by LEDs. Catalysis Today, 2016, 266, 27-35.	4.4	43
34	Synthesis of new ZnS–Bipy based hybrid organic–inorganic materials for photocatalytic reduction of 4-nitrophenol. New Journal of Chemistry, 2015, 39, 2188-2194.	2.8	11
35	Photocatalytic reduction of Cr(VI) by using stacked ZnS layers of ZnS(en) x complex. Journal of Environmental Chemical Engineering, 2015, 3, 3048-3054.	6.7	14
36	Preparation of efficient cadmium sulfide nanofibers for hydrogen production using ethylenediamine (NH2CH2CH2NH2) as template. Journal of Colloid and Interface Science, 2015, 451, 40-45.	9.4	37

RICARDO GOMEZ

#	Article	IF	CITATIONS
37	Mn-doped Zn/Al layered double hydroxides as photocatalysts for the 4-chlorophenol photodegradation. Applied Clay Science, 2015, 118, 38-47.	5.2	31
38	TiO2 xerogels prepared by modified sol–gel method with ethylenediamine are photoactive for the 4-nitrophenol photoreduction. Journal of Sol-Gel Science and Technology, 2014, 72, 428-434.	2.4	8
39	Kinetic study of the 4-Nitrophenol photooxidation and photoreduction reactions using CdS. Applied Catalysis B: Environmental, 2014, 144, 507-513.	20.2	54
40	Preparation and characterization of the hybrid ZnS(en)0.5–CdS heterojunction. Materials Letters, 2014, 115, 147-150.	2.6	19
41	Enhanced blue-light photocatalytic H2 production using CdS nanofiber. Catalysis Communications, 2014, 45, 139-143.	3.3	13
42	Photocatalytic hydrogen production by Au–MxOy (M Ag, Cu, Ni) catalysts supported on TiO2. Catalysis Communications, 2014, 47, 1-6.	3.3	58
43	Visible light photocatalytic reduction of 4-Nitrophenol using CdS in the presence of Na2SO3. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 257, 44-49.	3.9	40
44	New nanostructured CdS fibers for the photocatalytic reduction of 4-nitrophenol. Powder Technology, 2013, 250, 97-102.	4.2	20
45	Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition–precipitation with urea. Journal of Hazardous Materials, 2013, 263, 2-10.	12.4	97
46	Ni/C nanostructures: Impregnating-method preparation, textural and structural features, and catalytic property for the hydrogen production. Journal of Materials Research, 2013, 28, 3297-3309.	2.6	4
47	An efficient ZnS-UV photocatalysts generated in situ from ZnS(en)0.5 hybrid during the H2 production in methanol–water solution. International Journal of Hydrogen Energy, 2012, 37, 17002-17008.	7.1	38
48	Enhanced photoreduction of Cr(VI) using ZnS(en)0.5 hybrid semiconductor. Catalysis Communications, 2012, 19, 51-55.	3.3	23
49	Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 2012, 61, 1-7.	2.4	1,331
50	Photocatalytic Decomposition of Synthetic Alizarin Red S by Nickel Doped TiO2. Topics in Catalysis, 2011, 54, 490-495.	2.8	14
51	Photocatalytic Degradation of 4-Nitrophenol on Well Characterized Sol–Gel Molybdenum Doped Titania Semiconductors. Topics in Catalysis, 2011, 54, 504-511.	2.8	24
52	Degradation of the herbicide 2,4-dichlorophenoxyacetic acid over TiO2–CeO2 sol–gel photocatalysts: Effect of the annealing temperature on the photoactivity. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 383-388.	3.9	33
53	Synthesis of Camphene by α-Pinene Isomerization Using W2O3–Al2O3 Catalysts. Topics in Catalysis, 2010, 53, 1176-1178.	2.8	12
54	Synthesis, characterization, and 2,4-dichlorophenoxyacetic acid degradation on In-Na2Ti6O13 sol–gel prepared photocatalysts. Research on Chemical Intermediates, 2010, 36, 5-15.	2.7	6

RICARDO GOMEZ

#	Article	IF	CITATIONS
55	Structure Sensitivity of Sol-Gel Alkali Tantalates, ATaO ₃ (A= Li, Na and K): Acetone Gas Phase Condensation. Advanced Materials Research, 2010, 132, 61-67.	0.3	5
56	IMPROVED SELECTIVITY TO C8-OLEFINS FOR ISOBUTENE OLIGOMERIZATION ON NIO-W2O3/Al2O3CATALYSTS. Chemical Engineering Communications, 2009, 196, 1198-1205.	2.6	11
57	EVALUATION OF SULFATED ALUMINAS SYNTHESIZED VIA THE SOL-GEL METHOD IN THE ESTERIFICATION OF OLEIC ACID WITH ETHANOL. Chemical Engineering Communications, 2009, 196, 1152-1162.	2.6	16
58	Fourier Electron Density Maps for Nanostructured TiO ₂ and TiO ₂ -CeO ₂ Sol-Gel Solid. Journal of Nano Research, 2009, 5, 87-94.	0.8	4
59	Indium-Sensitized UV Photocatalysts Made from Alkali Titanate Microfibers. Materials Science Forum, 2009, 620-622, 651-654.	0.3	1
60	Photophysical and photocatalytic properties of nanosized copper-doped titania sol–gel catalysts. Catalysis Today, 2009, 148, 103-108.	4.4	159
61	Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by Mg–Zn–Al layered double hydroxides. Applied Catalysis B: Environmental, 2009, 90, 330-338.	20.2	232
62	MTBE visible-light photocatalytic decomposition over Au/TiO2 and Au/TiO2–Al2O3 sol–gel prepared catalysts. Journal of Molecular Catalysis A, 2008, 281, 93-98.	4.8	86
63	Photodegradation of the herbicide 2,4-dichlorophenoxyacetic acid on nanocrystalline TiO2–CeO2 sol–gel catalysts. Journal of Molecular Catalysis A, 2008, 281, 119-125.	4.8	69
64	Sol-gel preparation of In2O3-Al2O3 supports with controlled textural and structural properties. Reaction Kinetics and Catalysis Letters, 2007, 90, 331-338.	0.6	13
65	Claisen-Schmidt condensation reaction on BaO-ZrO2 mixed oxides. Reaction Kinetics and Catalysis Letters, 2007, 92, 361-368.	0.6	6
66	Room temperature olefins oligomerization over sulfated titania. Chemical Communications, 2004, , 1498-1499.	4.1	31
67	Title is missing!. Reaction Kinetics and Catalysis Letters, 2003, 79, 271-279.	0.6	6
68	Al2O3-TiO2 SOL-GEL MIXED OXIDES AS SUITABLE SUPPORTS FOR THE REDUCTION OF NO BY CO. Reaction Kinetics and Catalysis Letters, 2002, 76, 75-81.	0.6	11
69	Intrinsically Formed Trivalent Titanium Ions in Sol–Gel Titania. Journal of the American Ceramic Society, 2001, 84, 392-98.	3.8	22
70	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 17, 219-225.	2.4	10
71	Synthesis and characterization of SnOx/Al2O3 derived gel catalysts. Reaction Kinetics and Catalysis Letters, 1996, 59, 247-251.	0.6	7
72	Thermal decomposition and FTIR study of pyridine adsorption on sonogel catalysts. Thermochimica Acta, 1995, 255, 319-328.	2.7	2

5

#	Article	IF	CITATIONS
73	Catalyst Doped Sol-Gel Materials. , 1994, , 345-371.		13