Filippo Rosselli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7698455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Reviews, 2022, 52, 100904.	5.7	19
2	Tipping the Scale: MYC Gains Weight in Fanconi Anemia Bone Marrow Failure Progression. Cell Stem Cell, 2021, 28, 8-9.	11.1	1
3	Fanconi anemia A protein participates in nucleolar homeostasis maintenance and ribosome biogenesis. Science Advances, 2021, 7, .	10.3	19
4	Beyond DNA repair and chromosome instability—Fanconi anaemia as a cellular senescence-associated syndrome. Cell Death and Differentiation, 2021, 28, 1159-1173.	11.2	26
5	The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell and Bioscience, 2021, 11, 18.	4.8	15
6	The FANC/BRCA Pathway Releases Replication Blockades by Eliminating DNA Interstrand Cross-Links. Genes, 2020, 11, 585.	2.4	28
7	Hypoxia increases mutational load of breast cancer cells through frameshift mutations. Oncolmmunology, 2020, 9, 1750750.	4.6	20
8	Large deletions in immunoglobulin genes are associated with a sustained absence of DNA Polymerase î. Scientific Reports, 2020, 10, 1311.	3.3	7
9	Microphthalmia transcription factor expression contributes to bone marrow failure in Fanconi anemia. Journal of Clinical Investigation, 2020, 130, 1377-1391.	8.2	8
10	<scp>SMC</scp> 5/6 acts jointly with Fanconi anemia factors to support <scp>DNA</scp> repair and genome stability. EMBO Reports, 2020, 21, e48222.	4.5	16
11	Whole exome sequencing identifies a new mutation in the SLC19A2 gene leading to thiamineâ€responsive megaloblastic anemia in an Egyptian family. Molecular Genetics & Genomic Medicine, 2019, 7, e00777.	1.2	7
12	Familial predisposition to TP53/complex karyotype MDS and leukemia in DNA repair-deficient xeroderma pigmentosum. Blood, 2019, 133, 2718-2724.	1.4	31
13	Fanconi anemia proteins counteract the implementation of the oncogene-induced senescence program. Scientific Reports, 2019, 9, 17024.	3.3	14
14	A journey with common fragile sites: From S phase to telophase. Genes Chromosomes and Cancer, 2019, 58, 305-316.	2.8	36
15	NOX2-dependent ATM kinase activation dictates pro-inflammatory macrophage phenotype and improves effectiveness to radiation therapy. Cell Death and Differentiation, 2017, 24, 1632-1644.	11.2	50
16	A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency. ELife, 2017, 6, .	6.0	56
17	A never-ending story: the steadily growing family of the FA and FA-like genes. Genetics and Molecular Biology, 2017, 40, 398-407.	1.3	32
18	The Spi1/PU.1 transcription factor accelerates replication fork progression by increasing PP1 phosphatase in leukemia. Oncotarget, 2017, 8, 37104-37114.	1.8	8

FILIPPO ROSSELLI

#	Article	IF	CITATIONS
19	V(D)J recombination process and the Pre-B to immature B-cells transition are altered in Fancaâ^'/â^' mice. Scientific Reports, 2016, 6, 36906.	3.3	8
20	The ubiquitin family meets the Fanconi anemia proteins. Mutation Research - Reviews in Mutation Research, 2016, 769, 36-46.	5.5	15
21	FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells. Scientific Reports, 2016, 6, 36539.	3.3	30
22	Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells. Nucleic Acids Research, 2016, 44, 648-656.	14.5	69
23	The SLX4 Complex Is a SUMO E3 Ligase that Impacts on Replication Stress Outcome and Genome Stability. Molecular Cell, 2015, 57, 123-137.	9.7	111
24	Fanca deficiency reduces A/T transitions in somatic hypermutation and alters class switch recombination junctions in mouse B cells. Journal of Experimental Medicine, 2014, 211, 1011-1018.	8.5	21
25	Proteomic analysis unveils a FANCA-modulated neddylation pathway involved in CXCR5 membrane targeting and cell mobility. Journal of Cell Science, 2014, 127, 3546-54.	2.0	19
26	Defective endomitosis during megakaryopoiesis leads to thrombocytopenia in Fancaâ^'/â^' mice. Blood, 2014, 124, 3613-3623.	1.4	23
27	ERCC1 and MUS81–EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nature Cell Biology, 2013, 15, 1008-1015.	10.3	246
28	DNA synthesis by Pol η promotes fragile site stability by preventing under-replicated DNA in mitosis. Journal of Cell Biology, 2013, 201, 395-408.	5.2	165
29	FANC Pathway Promotes UV-Induced Stalled Replication Forks Recovery by Acting Both Upstream and Downstream Polî· and Rev1. PLoS ONE, 2013, 8, e53693.	2.5	18
30	Presence of a defect in karyokinesis during megakaryocyte endomitosis. Cell Cycle, 2012, 11, 4385-4389.	2.6	21
31	hSMG-1 is a granzyme B-associated stress-responsive protein kinase. Journal of Molecular Medicine, 2011, 89, 411-421.	3.9	9
32	USP1 deubiquitinase maintains phosphorylated CHK1 by limiting its DDB1-dependent degradation. Human Molecular Genetics, 2011, 20, 2171-2181.	2.9	57
33	Hypoxia-Dependent Inhibition of Tumor Cell Susceptibility to CTL-Mediated Lysis Involves NANOG Induction in Target Cells. Journal of Immunology, 2011, 187, 4031-4039.	0.8	57
34	The FANC pathway is activated by adenovirus infection and promotes viral replication-dependent recombination. Nucleic Acids Research, 2011, 39, 5459-5473.	14.5	14
35	The Fanconi anemia pathway promotes DNA glycosylaseâ€dependent excision of interstrand DNA crosslinks. Environmental and Molecular Mutagenesis, 2010, 51, 508-519.	2.2	20
36	The FANC pathway and mitosis: A replication legacy. Cell Cycle, 2009, 8, 2907-2912.	2.6	48

FILIPPO ROSSELLI

#	Article	IF	CITATIONS
37	The Human Oxidative DNA Glycosylase NEIL1 Excises Psoralen-induced Interstrand DNA Cross-links in a Three-stranded DNA Structure. Journal of Biological Chemistry, 2009, 284, 11963-11970.	3.4	57
38	The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nature Cell Biology, 2009, 11, 761-768.	10.3	276
39	Loss of CHK1 function impedes DNA damage-induced FANCD2 monoubiquitination but normalizes the abnormal G2 arrest in Fanconi anemia. Human Molecular Genetics, 2008, 17, 679-689.	2.9	54
40	Aberrant activation of stress-response pathways leads to TNF-α oversecretion in Fanconi anemia. Blood, 2008, 111, 1913-1923.	1.4	64
41	Critical Involvement of the ATM-Dependent DNA Damage Response in the Apoptotic Demise of HIV-1-Elicited Syncytia. PLoS ONE, 2008, 3, e2458.	2.5	41
42	Psoralen-induced DNA adducts are substrates for the base excision repair pathway in human cells. Nucleic Acids Research, 2007, 35, 5672-5682.	14.5	58
43	Nonapoptotic Role for Apaf-1 in the DNA Damage Checkpoint. Molecular Cell, 2007, 28, 624-637.	9.7	116
44	3R coordination by Fanconi anemia proteins. Biochimie, 2005, 87, 647-658.	2.6	23
45	Fanconi Anemia Proteins and the S Phase Checkpoint. Cell Cycle, 2004, 3, 696-698.	2.6	35
46	The DNA crosslink-induced S-phase checkpoint depends on ATR–CHK1 and ATR–NBS1–FANCD2 pathways. EMBO Journal, 2004, 23, 1178-1187.	7.8	215
47	BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks. EMBO Journal, 2004, 23, 3154-3163.	7.8	115
48	Fanconi anemia C gene product regulates expression of genes involved in differentiation and inflammation. Oncogene, 2004, 23, 5004-5013.	5.9	43
49	Fanconi anemia proteins and the s phase checkpoint. Cell Cycle, 2004, 3, 698-700.	2.6	23
50	Werner's syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle. Oncogene, 2003, 22, 1491-1500.	5.9	115
51	Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis. Oncogene, 2003, 22, 8645-8652.	5.9	66
52	The Fanconi anemia pathway and the DNA interstrand cross-links repair. Biochimie, 2003, 85, 1175-1184.	2.6	26
53	DNA cross-link-dependent RAD50/MRE11/NBS1 subnuclear assembly requires the Fanconi anemia C protein. Human Molecular Genetics, 2002, 11, 2531-2546.	2.9	84
54	Futile Caspase-8 Activation during the Apoptotic Cell Death Induced by DNA Damaging Agents in Human B-Lymphoblasts. Experimental Cell Research, 2001, 269, 2-12.	2.6	11

FILIPPO ROSSELLI

#	Article	IF	CITATIONS
55	Loss of the Fanconi anemia group C protein activity results in an inability to activate caspase-3 after ionizing radiation. Biochimie, 2000, 82, 51-58.	2.6	14
56	Comparison of the effects of DNA topoisomerase inhibitors on lymphoblasts from normal and Fanconi anemia donors. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 325, 137-144.	1.1	9
57	Persistence of drug-induced chromosome aberrations in peripheral blood lymophocytes of the rat. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1990, 232, 107-114.	1.0	22
58	Cocultivation of Fanconi anemia cells and of mouse lymphoma mutants leads to interspecies complementation of chromosomal hypersensitivity to DNA cross-linking agents. Human Genetics, 1990, 84, 517-21.	3.8	13
59	Chromosomal hypersensitivity in mutant MCN-151 mouse cells exposed to mitomycin C. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1989, 225, 115-119.	1.1	5
60	Clastogenic effects induced in mice and rats by 1,4-bis[2-(3,5-dichloropyridyloxy)]-benzene, a phenobarbital-like enzyme inducer and liver tumour promoter. Carcinogenesis, 1988, 9, 1147-1152.	2.8	7
61	Chromosome aberrations in rat liver cells and bone marrow cells following treatment in vivo with mitomycin C. Mutagenesis, 1986, 1, 335-338.	2.6	2