Liselot Dewachter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7698247/publications.pdf

Version: 2024-02-01

	840776		1058476	
15	757	11	14	
papers	citations	h-index	g-index	
18	18	18	855	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Obg and Membrane Depolarization Are Part of a Microbial Bet-Hedging Strategy that Leads to Antibiotic Tolerance. Molecular Cell, 2015, 59, 9-21.	9.7	261
2	Bacterial Heterogeneity and Antibiotic Survival: Understanding and Combatting Persistence and Heteroresistance. Molecular Cell, 2019, 76, 255-267.	9.7	123
3	The Persistence-Inducing Toxin HokB Forms Dynamic Pores That Cause ATP Leakage. MBio, 2018, 9, .	4.1	68
4	An integrative view of cell cycle control in Escherichia coli. FEMS Microbiology Reviews, 2018, 42, 116-136.	8.6	63
5	HokB Monomerization and Membrane Repolarization Control Persister Awakening. Molecular Cell, 2019, 75, 1031-1042.e4.	9.7	57
6	The Dynamic Transition of Persistence toward the Viable but Nonculturable State during Stationary Phase Is Driven by Protein Aggregation. MBio, 2021, 12, e0070321.	4.1	42
7	Protein Aggregation as a Bacterial Strategy to Survive Antibiotic Treatment. Frontiers in Molecular Biosciences, 2021, 8, 669664.	3.5	29
8	A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli. MBio, 2015, 6, e01935-15.	4.1	22
9	Mutations in respiratory complex I promote antibiotic persistence through alterations in intracellular acidity and protein synthesis. Nature Communications, 2022, 13, 546.	12.8	21
10	Reactive oxygen species do not contribute to ObgE*-mediated programmed cell death. Scientific Reports, 2016, 6, 33723.	3.3	14
11	A Mutant Isoform of ObgE Causes Cell Death by Interfering with Cell Division. Frontiers in Microbiology, 2017, 8, 1193.	3.5	14
12	GTP Binding Is Necessary for the Activation of a Toxic Mutant Isoform of the Essential GTPase ObgE. International Journal of Molecular Sciences, 2020, 21, 16.	4.1	13
13	Amoxicillin-resistant Streptococcus pneumoniae can be resensitized by targeting the mevalonate pathway as indicated by sCRilecs-seq. ELife, 0, 11 , .	6.0	11
14	Biochemical determinants of ObgEâ€mediated persistence. Molecular Microbiology, 2019, 112, 1593-1608.	2.5	7
15	The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death. Microbial Cell, 2016, 3, 255-256.	3.2	5