FlÃ;vio AnastÃ;cio de Oliveira Camargo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7698195/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology, 2005, 96, 1049-1055.	4.8	567
2	Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresource Technology, 2011, 102, 11003-11010.	4.8	238
3	Degradability of linear polyolefins under natural weathering. Polymer Degradation and Stability, 2011, 96, 703-707.	2.7	210
4	Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresource Technology, 2008, 99, 2637-2643.	4.8	194
5	Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control, 2014, 37, 251-256.	2.8	182
6	Abiotic and biotic degradation of oxo-biodegradable polyethylenes. Polymer Degradation and Stability, 2009, 94, 965-970.	2.7	137
7	The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and Composition in a Subtropical Acrisol. Diversity, 2012, 4, 375-395.	0.7	102
8	Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp Bioresource Technology, 2008, 99, 2644-2649.	4.8	100
9	Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. International Biodeterioration and Biodegradation, 2005, 56, 143-150.	1.9	93
10	Impact of biodiesel on biodeterioration of stored Brazilian diesel oil. International Biodeterioration and Biodegradation, 2011, 65, 172-178.	1.9	90
11	Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals. Ecotoxicology and Environmental Safety, 2017, 140, 162-169.	2.9	89
12	Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil. Science of the Total Environment, 2010, 408, 1501-1507.	3.9	70
13	Comparison of bioremediation strategies for soil impacted with petrochemical oily sludge. International Biodeterioration and Biodegradation, 2014, 95, 338-345.	1.9	69
14	Diversity of chromium-resistant bacteria isolated from soils contaminated with dichromate. Applied Soil Ecology, 2005, 29, 193-202.	2.1	66
15	Bioremediation of soil contaminated by diesel oil. Brazilian Journal of Microbiology, 2003, 34, 65-68.	0.8	57
16	Soil-Borne Bacterial Structure and Diversity Does Not Reflect Community Activity in Pampa Biome. PLoS ONE, 2013, 8, e76465.	1.1	52
17	Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy. Environmental Science and Pollution Research, 2014, 21, 2592-2602.	2.7	51
18	Evaluation of resistance genes and virulence factors in a food isolated Enterococcus durans with potential probiotic effect. Food Control, 2015, 51, 49-54.	2.8	50

#	Article	IF	CITATIONS
19	Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil. International Biodeterioration and Biodegradation, 2014, 95, 356-363.	1.9	47
20	Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil. Environmental Science and Pollution Research, 2016, 23, 2371-2380.	2.7	47
21	Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Chemosphere, 2010, 81, 1149-1154.	4.2	46
22	Enzymatic activity of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase produced by Gordonia polyisoprenivorans. Quimica Nova, 2012, 35, 1587-1592.	0.3	46
23	Use of High-Yielding Bioenergy Plant Castor Bean (Ricinus communis L.) as a Potential Phytoremediator for Copper-Contaminated Soils. Pedosphere, 2013, 23, 651-661.	2.1	46
24	Soil suppressiveness and its relations with the microbial community in a Brazilian subtropical agroecosystem under different management systems. Soil Biology and Biochemistry, 2016, 96, 191-197.	4.2	42
25	Fuel biodegradation and molecular characterization of microbial biofilms in stored diesel/biodiesel blend B10 and the effect of biocide. International Biodeterioration and Biodegradation, 2014, 95, 346-355.	1.9	39
26	Abiotic and biotic degradation of oxo-biodegradable foamed polystyrene. Polymer Degradation and Stability, 2009, 94, 2128-2133.	2.7	38
27	Isolation and characterization of bacteria from mercury contaminated sites in Rio Grande do Sul, Brazil, and assessment of methylmercury removal capability of a Pseudomonas putida V1 strain. Biodegradation, 2013, 24, 319-331.	1.5	38
28	Relationship between honeybee nutrition and their microbial communities. Antonie Van Leeuwenhoek, 2015, 107, 921-933.	0.7	36
29	Hexavalent Chromium Reduction by Immobilized Cells and the Cell-Free Extract of Bacillus sp. ES 29. Bioremediation Journal, 2004, 8, 23-30.	1.0	35
30	Oily sludge stimulates microbial activity and changes microbial structure in a landfarming soil. International Biodeterioration and Biodegradation, 2016, 115, 90-101.	1.9	35
31	Bioprospection of indigenous flora grown in copper mining tailing area for phytoremediation of metals. Journal of Environmental Management, 2020, 256, 109953.	3.8	32
32	Bioaccumulation and distribution of selenium in Enterococcus durans. Journal of Trace Elements in Medicine and Biology, 2017, 40, 37-45.	1.5	30
33	Microbial community composition in Brazilian stored diesel fuel of varying sulfur content, using high-throughput sequencing. Fuel, 2017, 189, 340-349.	3.4	29
34	Characterization of Copper-Resistant Rhizosphere Bacteria from Avena sativa and Plantago lanceolata for Copper Bioreduction and Biosorption. Biological Trace Element Research, 2012, 146, 107-115.	1.9	27
35	A longâ€ŧerm noâ€ŧillage system can increase enzymatic activity and maintain bacterial richness in paddy fields. Land Degradation and Development, 2021, 32, 2257-2268.	1.8	27
36	Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption. Brazilian Journal of Microbiology, 2011, 42, 66-74.	0.8	26

#	Article	IF	CITATIONS
37	Antimicrobial and antioxidant activities of Enterococcus species isolated from meat and dairy products. Brazilian Journal of Biology, 2015, 75, 923-931.	0.4	26
38	Shortâ€ŧerm Impacts on Soilâ€quality Assessment in Alternative Land Uses of Traditional Paddy Fields in Southern Brazil. Land Degradation and Development, 2017, 28, 534-542.	1.8	26
39	Potential of Solanum viarum Dunal in use for phytoremediation of heavy metals to mining areas, southern Brazil. Environmental Science and Pollution Research, 2019, 26, 24132-24142.	2.7	25
40	Alterações eletroquÃmicas em solos inundados. Ciencia Rural, 1999, 29, 171-180.	0.3	24
41	Properties of catechol 1,2-dioxygenase in the cell free extract and immobilized extract of Mycobacterium fortuitum. Brazilian Journal of Microbiology, 2013, 44, 291-297.	0.8	22
42	Phytoremediation of heavy metals and nutrients by the <i>Sagittaria montevidensis</i> into an anthropogenic contaminated site at Southern of Brazil. International Journal of Phytoremediation, 2019, 21, 1145-1152.	1.7	22
43	A Comparison of Microbial Bioaugmentation and Biostimulation for Hexavalent Chromium Removal from Wastewater. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	21
44	Production of Selenium-Enriched Biomass by Enterococcus durans. Biological Trace Element Research, 2013, 155, 447-454.	1.9	19
45	Evaluation of two Brazilian indigenous plants for phytostabilization and phytoremediation of copper-contaminated soils. Brazilian Journal of Biology, 2015, 75, 868-877.	0.4	19
46	Metal-resistant rhizobacteria isolates improve Mucuna deeringiana phytoextraction capacity in multi-metal contaminated soils from a gold mining area. Environmental Science and Pollution Research, 2017, 24, 3063-3073.	2.7	19
47	Soil properties governing phosphorus adsorption in soils of Southern Brazil. Geoderma Regional, 2020, 22, e00318.	0.9	19
48	Capability of a selected bacterial consortium for degrading diesel/biodiesel blends (B20): Enzyme and biosurfactant production. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 1776-1784.	0.9	18
49	Distribution and Interaction Patterns of Bacterial Communities in an Ornithogenic Soil of Seymour Island, Antarctica. Microbial Ecology, 2015, 69, 684-694.	1.4	18
50	Sediment pollution in margins of the Lake GuaÃba, Southern Brazil. Environmental Monitoring and Assessment, 2018, 190, 3.	1.3	18
51	In vivo action of Lactococcus lactis subsp. lactis isolate (R7) with probiotic potential in the stabilization of cancer cells in the colorectal epithelium. Process Biochemistry, 2020, 91, 165-171.	1.8	18
52	Integrated crop–livestock systems in lowlands increase the availability of nutrients to irrigated rice. Land Degradation and Development, 2020, 31, 2962-2972.	1.8	18
53	Potential Phytoextraction and Phytostabilization of Perennial Peanut on Copper-Contaminated Vineyard Soils and Copper Mining Waste. Biological Trace Element Research, 2011, 143, 1729-1739.	1.9	16
54	Heavy Metals and Nutrients Uptake by Medicinal Plants Cultivated on Multi-metal Contaminated Soil Samples from an Abandoned Gold Ore Processing Site. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	15

#	Article	IF	CITATIONS
55	Sediment pollution in an urban water supply lake in southern Brazil. Environmental Monitoring and Assessment, 2019, 191, 12.	1.3	15
56	Methylmercury degradation by Pseudomonas putida V1. Ecotoxicology and Environmental Safety, 2016, 130, 37-42.	2.9	14
57	In situ phytoremediation characterization of heavy metals promoted by Hydrocotyle ranunculoides at Santa Bárbara stream, an anthropogenic polluted site in southern of Brazil. Environmental Science and Pollution Research, 2018, 25, 28312-28321.	2.7	14
58	Soybean crop incorporation in irrigated rice cultivation improves nitrogen availability, soil microbial diversity and activity, and growth of ryegrass. Applied Soil Ecology, 2022, 170, 104313.	2.1	14
59	13-loci STR multiplex system for Brazilian seized samples of marijuana: individualization and origin differentiation. International Journal of Legal Medicine, 2019, 133, 373-384.	1.2	13
60	Effects of Stimulation of Copper Bioleaching on Microbial Community in Vineyard Soil and Copper Mining Waste. Biological Trace Element Research, 2012, 146, 124-133.	1.9	12
61	Biodegradation potential of Serratiamarcescens for diesel/biodiesel blends. International Biodeterioration and Biodegradation, 2016, 110, 141-146.	1.9	12
62	Treated Industrial Wastewater Effects on Chemical Constitution Maize Biomass, Physicochemical Soil Properties, and Economic Balance. Communications in Soil Science and Plant Analysis, 2018, 49, 319-333.	0.6	12
63	Biogeography of diazotrophic bacteria in soils. World Journal of Microbiology and Biotechnology, 2010, 26, 1503-1508.	1.7	11
64	Bioreduction of Cu(II) by Cell-Free Copper Reductase from a Copper Resistant Pseudomonas sp. NA. Biological Trace Element Research, 2011, 143, 1182-1192.	1.9	11
65	Solubility of Heavy Metals/Metalloid on Multi-Metal Contaminated Soil Samples from a Gold Ore Processing Area: Effects of Humic Substances. Revista Brasileira De Ciencia Do Solo, 2016, 40, .	0.5	11
66	Analysis of Isomeric Cannabinoid Standards and Cannabis Products by UPLC‑ESI‑TWIM-MS: a Comparison with GC‑MS and GC × GC-QMS. Journal of the Brazilian Chemical Society, 0, , .	0.6	11
67	A Bibliometric Analysis of Cannabis Publications: Six Decades of Research and a Gap on Studies with the Plant. Publications, 2018, 6, 40.	1.9	11
68	Redução de cromo hexavalente por bactérias isoladas de solos contaminados com cromo. Ciencia Rural, 2007, 37, 1661-1667.	0.3	10
69	Bioaugmentation-assisted phytoremediation of As, Cd, and Pb using Sorghum bicolor in a contaminated soil of an abandoned gold ore processing plant. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	0.5	10
70	The effects of trace elements, cations, and environmental conditions on protocatechuate 3,4-dioxygenase activity. Scientia Agricola, 2013, 70, 68-73.	0.6	9
71	SOIL FUNGISTASIS AGAINST FUSARIUM GRAMINEARUM UNDER DIFFERENT CROP MANAGEMENT SYSTEMS. Revista Brasileira De Ciencia Do Solo, 2015, 39, 69-77.	0.5	9
72	ALTERAÇÕES ELETROQUĂMICAS E DINĂ,MICA DE NUTRIENTES NA SOLUĂ‡ĂƒO DO SOLO EM ARROZ IRRIGADO COM LIXIVIADO INDUSTRIAL TRATADO. Revista Brasileira De Ciencia Do Solo, 2015, 39, 466-474.	0.5	9

#	Article	IF	CITATIONS
73	Irrigation of paddy soil with industrial landfill leachate: impacts in rice productivity, plant nutrition, and chemical characteristics of soil. Paddy and Water Environment, 2017, 15, 133-144.	1.0	9
74	How different soil moisture levels affect the microbial activity. Ciencia Rural, 2020, 50, .	0.3	9
75	Evaluation of the potential impact of fluorine-rich fertilizers on the Guarani Aquifer System, Rio Grande do Sul, Southern Brazil. Environmental Earth Sciences, 2013, 69, 77-84.	1.3	8
76	Evaluation of two 13-loci STR multiplex system regarding identification and origin discrimination of Brazilian Cannabis sativa samples. International Journal of Legal Medicine, 2020, 134, 1603-1612.	1.2	8
77	Propriedades quÃmicas de um Argissolo tratado sucessivamente com composto de lixo urbano. Ciencia Rural, 2011, 41, 433-439.	0.3	7
78	Phytoremediation of Vineyard Copper-Contaminated Soil and Copper Mining Waste by a High Potential Bioenergy Crop (<i>Helianthus annus</i> L.). Journal of Plant Nutrition, 2015, 38, 1580-1594.	0.9	7
79	Atividade microbiana em solos sob doses de lodo de estação de tratamento de efluentes de um aterro industrial. Ciencia Rural, 2016, 46, 267-272.	0.3	7
80	Lago GuaÃba: uma análise histórico-cultural da poluição hÃdrica em Porto Alegre, RS, Brasil. Engenharia Sanitaria E Ambiental, 2019, 24, 229-237.	0.1	7
81	Geographic origin determination of Brazilian Cannabis sativa L. (Marihuana) by multi-element concentration. Forensic Science International, 2020, 315, 110459.	1.3	7
82	The Urban Pressure Over the Sediment Contamination in a Southern Brazil Metropolis: the Case of Diluvio Stream. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	7
83	Cultivation of sorghum and sunflower in soils with amendment of sludge from industrial landfill. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8, 119-130.	2.0	6
84	Whole Plastome Sequences of Two Drugâ€Type <i>Cannabis</i> : Insights Into the Use of Plastid in Forensic Analyses. Journal of Forensic Sciences, 2020, 65, 259-265.	0.9	6
85	Molecular identification and microbiological evaluation of isolates from equipments and food contact surfaces in a hospital Food and Nutrition Unit. Brazilian Journal of Biology, 2019, 79, 191-200.	0.4	5
86	Assessment of Beneficial Properties of <i>Enterococcus</i> Strains. Journal of Food Processing and Preservation, 2014, 38, 665-675.	0.9	4
87	The historical influence of tributaries on the water and sediment of Jacủ۪s Delta, Southern Brazil. Revista Ambiente & Ãgua, 2018, 13, 1.	0.1	4
88	Metal-Resistant Rhizobacteria Change Soluble-Exchangeable Fraction in Multi-Metal-Contaminated Soil Samples. Revista Brasileira De Ciencia Do Solo, 2018, 42, .	0.5	4
89	Physico-chemical variability and heavy metal pollution of surface sediment in a non-channeled section of Dilºvio Stream (Southern Brazil) and the influence of channeled section in sediment pollution. Revista Ambiente & Água, 2019, 14, 1.	0.1	4
90	Impact of water content on microbial growth in Brazilian biodiesel during simulated storage. Fuel, 2021, 297, 120761.	3.4	4

#	Article	IF	CITATIONS
91	Rizóbios nativos do Rio Grande do Sul simbioticamente eficientes em Lotus glaber. Ciencia Rural, 2011, 41, 440-446.	0.3	3
92	Biosorption and Bioreduction of Copper from Different Copper Compounds in Aqueous Solution. Biological Trace Element Research, 2013, 152, 411-416.	1.9	3
93	Biomassa e atividade microbiana do solo em sistemas de produção olerÃcola orgânica e convencional. Ciencia Rural, 2013, 43, 270-276.	0.3	3
94	Evaluation of Enydra anagallis remediation at a contaminated watercourse in south Brazil. International Journal of Phytoremediation, 2020, 22, 1216-1223.	1.7	3
95	Impact of Treated Industrial Effluent on Physical and Chemical Properties of Three Subtropical Soils and Millet Nutrition. Communications in Soil Science and Plant Analysis, 2017, 48, 2514-2525.	0.6	2
96	Phytoremediation of metals by colonizing plants developed in point bars in the channeled bed of the Dilúvio Stream, Southern Brazil. International Journal of Phytoremediation, 2022, 24, 59-65.	1.7	2
97	The use of vegetal tissue multi-element content as an indicator of soil or substrate type employed to cultivate Cannabis sativa L. (marijuana). Forensic Chemistry, 2021, 23, 100319.	1.7	2
98	Analysis of Baccharis dracunculifolia and Baccharis trimera for Phytoremediation of Heavy Metals in Copper Mining Tailings Area in Southern Brazil. Applied Biochemistry and Biotechnology, 2022, 194, 694-708.	1.4	2
99	Geoaccumulation of Heavy Metals in the Sediment of Lake GuaÃba Transitional Waters, Southern Brazil. Environmental Engineering Science, 2019, 36, 1315-1322.	0.8	1
100	Copper adsorption by different extracts of shrimp chitin. , 0, 141, 220-228.		1
101	Crescimento e teor de cromo em mamoneira cultivada em solo receptor de resÃduos de curtume e carbonÃferos. Engenharia Sanitaria E Ambiental, 2019, 24, 1095-1102.	0.1	1
102	Adsorção de Cu, Zn e P em solos adubados com dejetos animais. Revista Ibero-americana De Ciências Ambientais, 2020, 11, 437-447.	0.0	1
103	Chemical attributes of percolate from degraded sand soil irrigated with treated industrial wastewater. Environmental Quality Management, 0, , .	1.0	0
104	Extração sequencial para avaliação de Cu, Zn, Mn, Cd, Ni, Cr E Pb em solos com aplicação de dejetos de animais. Revista Ibero-americana De Ciências Ambientais, 2020, 11, 424-436.	0.0	0
105	Maize grain supply and demand for the animal protein chain in the Rio Grande do Sul State, Brazil. Ciencia Rural, 2022, 52, .	0.3	0