Michele Baglioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7698046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured fluids for polymeric coatings removal: Surfactants affect the polymer glass transition temperature. Journal of Colloid and Interface Science, 2022, 606, 124-134.	5.0	11
2	pH-Controlled assembly of polyelectrolyte layers on silica nanoparticles in concentrated suspension. Journal of Colloid and Interface Science, 2022, 615, 265-272.	5.0	6
3	Self-Assembly of Soluplus in Aqueous Solutions: Characterization and Prospectives on Perfume Encapsulation. ACS Applied Materials & amp; Interfaces, 2022, 14, 14791-14804.	4.0	17
4	The use of nanostructured fluids for the removal of polymer coatings from a Nuxalk monumental carving – exploring the cleaning mechanism. Journal of Cultural Heritage, 2022, 55, 18-29.	1.5	4
5	Advanced Materials in Cultural Heritage Conservation. Molecules, 2021, 26, 3967.	1.7	52
6	Selective removal of over-paintings from "Street Art―using an environmentally friendly nanostructured fluid loaded in highly retentive hydrogels. Journal of Colloid and Interface Science, 2021, 595, 187-201.	5.0	18
7	Assessment of aqueous cleaning of acrylic paints using innovative cryogels. Microchemical Journal, 2020, 152, 104311.	2.3	10
8	Removing Ingrained Soiling from Medieval Lime-based Wall Paintings Using Nanorestore Gel® Peggy 6 in Combination with Aqueous Cleaning Liquids. Studies in Conservation, 2020, 65, P284-P291.	0.6	6
9	Nonionic Surfactants for the Cleaning of Works of Art: Insights on Acrylic Polymer Films Dewetting and Artificial Soil Removal. ACS Applied Materials & amp; Interfaces, 2020, 12, 26704-26716.	4.0	20
10	Grafted nanocellulose and alkaline nanoparticles for the strengthening and deacidification of cellulosic artworks. Journal of Colloid and Interface Science, 2020, 576, 147-157.	5.0	34
11	Twin-chain polymer networks loaded with nanostructured fluids for the selective removal of a non-original varnish from Picasso's "L'Atelier―at the Peggy Guggenheim Collection, Venice. Heritage Science, 2020, 8, .	1.0	22
12	Surfactants Mediate the Dewetting of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Interfaces, 2019, 11, 27288-27296.	4.0	12
13	Removing Polymeric Coatings With Nanostructured Fluids: Influence of Substrate, Nature of the Film, and Application Methodology. Frontiers in Materials, 2019, 6, .	1.2	16
14	Smart Soft Nanomaterials for Cleaning. , 2019, , 171-204.		10
15	Polymer Film Dewetting by Water/Surfactant/Goodâ€Solvent Mixtures: A Mechanistic Insight and Its Implications for the Conservation of Cultural Heritage. Angewandte Chemie, 2018, 130, 7477-7481.	1.6	11
16	Complex Fluids Confined into Semi-interpenetrated Chemical Hydrogels for the Cleaning of Classic Art: A Rheological and SAXS Study. ACS Applied Materials & Interfaces, 2018, 10, 19162-19172.	4.0	40
17	Polymer Film Dewetting by Water/Surfactant/Goodâ€Solvent Mixtures: A Mechanistic Insight and Its Implications for the Conservation of Cultural Heritage. Angewandte Chemie - International Edition, 2018, 57, 7355-7359.	7.2	42
18	Nanostructured fluids for the removal of graffiti–ÂA survey on 17 commercial spray-can paints. Journal of Cultural Heritage, 2018, 34, 218-226.	1.5	23

MICHELE BAGLIONI

#	Article	IF	CITATIONS
19	A Triton X-100-Based Microemulsion for the Removal of Hydrophobic Materials from Works of Art: SAXS Characterization and Application. Materials, 2018, 11, 1144.	1.3	29
20	Nanofluids and chemical highly retentive hydrogels for controlled and selective removal of overpaintings and undesired graffiti from street art. Analytical and Bioanalytical Chemistry, 2017, 409, 3707-3712.	1.9	21
21	Dewetting acrylic polymer films with water/propylene carbonate/surfactant mixtures – implications for cultural heritage conservation. Physical Chemistry Chemical Physics, 2017, 19, 23723-23732.	1.3	31
22	Confined Aqueous Media for the Cleaning of Cultural Heritage: Innovative Gels and Amphiphile-Based Nanofluids. , 2016, , 283-311.		7
23	Nanomaterials for the cleaning and pH adjustment of vegetable-tanned leather. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	24
24	Polymer Films Removed from Solid Surfaces by Nanostructured Fluids: Microscopic Mechanism and Implications for the Conservation of Cultural Heritage. ACS Applied Materials & Interfaces, 2015, 7, 6244-6253.	4.0	30
25	Amphiphile-based nanofludis for the removal of styrene/acrylate coatings: Cleaning of stucco decoration in the Uaxactun archeological site (Guatemala). Journal of Cultural Heritage, 2015, 16, 862-868.	1.5	20
26	An amine-oxide surfactant-based microemulsion for the cleaning of works of art. Journal of Colloid and Interface Science, 2015, 440, 204-210.	5.0	40
27	Nanostructured fluids from degradable nonionic surfactants for the cleaning of works of art from polymer contaminants. Soft Matter, 2014, 10, 6798.	1.2	40
28	Nanostructured Surfactant-Based Systems for the Removal of Polymers from Wall Paintings: A Small-Angle Neutron Scattering Study. Langmuir, 2012, 28, 15193-15202.	1.6	49
29	Smart cleaning of cultural heritage: a new challenge for soft nanoscience. Nanoscale, 2012, 4, 42-53.	2.8	82
30	Removal of acrylic coatings from works of art by means of nanofluids: understanding the mechanism at the nanoscale. Nanoscale, 2010, 2, 1723.	2.8	60
31	New Methodologies for the Conservation of Cultural Heritage: Micellar Solutions, Microemulsions, and Hydroxide Nanoparticles. Accounts of Chemical Research, 2010, 43, 695-704.	7.6	160