Ann H West

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7697924/publications.pdf Version: 2024-02-01

ANN H WEST

#	Article	IF	CITATIONS
1	Insights revealed by the coâ€crystal structure of the Saccharomyces cerevisiae histidine phosphotransfer protein Ypd1 and the receiver domain of its downstream response regulator Ssk1. Protein Science, 2019, 28, 2099-2111.	3.1	5
2	Role of the highly conserved G68 residue in the yeast phosphorelay protein Ypd1: implications for interactions between histidine phosphotransfer (HPt) and response regulator proteins. BMC Biochemistry, 2019, 20, 1.	4.4	6
3	Regulatory Targets of the Response Regulator RR_1586 from Clostridioides difficile Identified Using a Bacterial One-Hybrid Screen. Journal of Bacteriology, 2018, 200, .	1.0	5
4	Use of restrained molecular dynamics to predict the conformations of phosphorylated receiver domains in twoâ€component signaling systems. Proteins: Structure, Function and Bioinformatics, 2017, 85, 155-176.	1.5	12
5	Crystal structure and DNA binding activity of a PadR family transcription regulator from hypervirulent Clostridium difficile R20291. BMC Microbiology, 2016, 16, 231.	1.3	13
6	Extended N-terminal region of the essential phosphorelay signaling protein Ypd1 from <i>Cryptococcus neoformans</i> contributes to structural stability, phosphostability and binding of calcium ions. FEMS Yeast Research, 2016, 16, fow068.	1.1	8
7	Crystal structures of two nitroreductases from hypervirulent Clostridium difficile and functionally related interactions with the antibiotic metronidazole. Nitric Oxide - Biology and Chemistry, 2016, 60, 32-39.	1.2	11
8	Evidence for an induced conformational change in the catalytic mechanism of homoisocitrate dehydrogenase for Saccharomyces cerevisiae: Characterization of the D271N mutant enzyme. Archives of Biochemistry and Biophysics, 2015, 584, 20-27.	1.4	0
9	Probing the chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae using site-directed mutagenesis. Archives of Biochemistry and Biophysics, 2015, 584, 98-106.	1.4	4
10	Histidine Phosphotransfer Proteins in Fungal Two-Component Signal Transduction Pathways. Eukaryotic Cell, 2013, 12, 1052-1060.	3.4	53
11	Evidence in Support of Lysine 77 and Histidine 96 as Acid–Base Catalytic Residues in Saccharopine Dehydrogenase from <i>Saccharomyces cerevisiae</i> . Biochemistry, 2012, 51, 857-866.	1.2	11
12	Supporting role of lysine 13 and glutamate 16 in the acid–base mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 2012, 522, 57-61.	1.4	6
13	Immunodominance of Antigenic Site B over Site A of Hemagglutinin of Recent H3N2 Influenza Viruses. PLoS ONE, 2012, 7, e41895.	1.1	92
14	The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH. Archives of Biochemistry and Biophysics, 2011, 513, 71-80.	1.4	3
15	Contribution of K99 and D319 to substrate binding and catalysis in the saccharopine dehydrogenase reaction. Archives of Biochemistry and Biophysics, 2011, 514, 8-15.	1.4	4
16	Kinetic and Chemical Mechanisms of Homocitrate Synthase from Thermus thermophilus. Journal of Biological Chemistry, 2011, 286, 29428-29439.	1.6	6
17	Fungal Skn7 Stress Responses and Their Relationship to Virulence. Eukaryotic Cell, 2011, 10, 156-167.	3.4	62
18	Glutamates 78 and 122 in the Active Site of Saccharopine Dehydrogenase Contribute to Reactant Binding and Modulate the Basicity of the Acid-Base Catalysts. Journal of Biological Chemistry, 2010, 285, 20756-20768.	1.6	7

ANN H WEST

#	Article	IF	CITATIONS
19	Kinetic Studies of the Yeast His-Asp Phosphorelay Signaling Pathway. Methods in Enzymology, 2010, 471, 59-75.	0.4	8
20	Genetic and Biochemical Analysis of the SLN1 Pathway in Saccharomyces cerevisiae. Methods in Enzymology, 2010, 471, 291-317.	0.4	17
21	Effects of Osmolytes on the SLN1-YPD1-SSK1 Phosphorelay System from <i>Saccharomyces cerevisiae</i> . Biochemistry, 2009, 48, 8044-8050.	1.2	27
22	Site-Directed Mutagenesis as a Probe of the Acidâ^'Base Catalytic Mechanism of Homoisocitrate Dehydrogenase fromSaccharomyces cerevisiae. Biochemistry, 2009, 48, 7305-7312.	1.2	12
23	Chemical Mechanism of Saccharopine Reductase from <i>Saccharomyces cerevisiae</i> . Biochemistry, 2009, 48, 5899-5907.	1.2	13
24	Crystal structures of manganese- and cobalt-substituted myoglobin in complex with NO and nitrite reveal unusual ligand conformations. Journal of Inorganic Biochemistry, 2008, 102, 216-233.	1.5	40
25	Crystal Structure of a Complex between the Phosphorelay Protein YPD1 and the Response Regulator Domain of SLN1 Bound to a Phosphoryl Analog. Journal of Molecular Biology, 2008, 375, 1141-1151.	2.0	47
26	Overall Kinetic Mechanism of Saccharopine Dehydrogenase (<scp>l</scp> -Glutamate Forming) from Saccharomyces cerevisiae. Biochemistry, 2008, 47, 5417-5423.	1.2	6
27	Chemical Mechanism of Homoisocitrate Dehydrogenase fromSaccharomyces cerevisiaeâ€. Biochemistry, 2008, 47, 4169-4180.	1.2	20
28	Potassium Is an Activator of Homoisocitrate Dehydrogenase from <i>Saccharomyces cerevisiae</i> . Biochemistry, 2008, 47, 10809-10815.	1.2	13
29	Evidence for a Catalytic Dyad in the Active Site of Homocitrate Synthase from Saccharomyces cerevisiae. Biochemistry, 2008, 47, 6851-6858.	1.2	21
30	Complete Kinetic Mechanism of Homoisocitrate Dehydrogenase fromSaccharomyces cerevisiaeâ€. Biochemistry, 2007, 46, 890-898.	1.2	17
31	A Proposed Proton Shuttle Mechanism for Saccharopine Dehydrogenase fromSaccharomyces cerevisiaeâ€. Biochemistry, 2007, 46, 871-882.	1.2	19
32	Determinants of Substrate Specificity for Saccharopine Dehydrogenase from Saccharomyces cerevisiae. Biochemistry, 2007, 46, 7625-7636.	1.2	5
33	Functional characterization of the phosphorelay protein Mpr1p fromSchizosaccharomyces pombe. FEMS Yeast Research, 2007, 7, 912-921.	1.1	8
34	Functional studies of the Ssk1p response regulator protein of Candida albicans as determined by phenotypic analysis of receiver domain point mutants. Molecular Microbiology, 2006, 62, 997-1013.	1.2	33
35	Crystal structures of the nitrite and nitric oxide complexes of horse heart myoglobin. Journal of Inorganic Biochemistry, 2006, 100, 1413-1425.	1.5	103
36	Crystal Structure of the His-Tagged Saccharopine Reductase From Saccharomyces cerevisiae at 1.7-Ã Resolution. Cell Biochemistry and Biophysics, 2006, 46, 17-26.	0.9	8

ANN H WEST

#	Article	IF	CITATIONS
37	The α-Aminoadipate Pathway for Lysine Biosynthesis in Fungi. Cell Biochemistry and Biophysics, 2006, 46, 43-64.	0.9	135
38	A common docking site for response regulators on the yeast phosphorelay protein YPD1. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1748, 138-145.	1.1	23
39	Regulatory Mechanism of Histidine-tagged Homocitrate Synthase from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 31624-31632.	1.6	24
40	Kinetic Analysis of YPD1-Dependent Phosphotransfer Reactions in the Yeast Osmoregulatory Phosphorelay Systemâ€. Biochemistry, 2005, 44, 377-386.	1.2	50
41	Stabilization and characterization of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 2004, 421, 243-254.	1.4	24
42	The Yeast YPD1/SLN1 Complex. Structure, 2003, 11, 1569-1581.	1.6	65
43	Co-crystallization of the yeast phosphorelay protein YPD1 with the SLN1 response-regulator domain and preliminary X-ray diffraction analysis. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 927-929.	2.5	3
44	Crystal structures of ferrous horse heart myoglobin complexed with nitric oxide and nitrosoethane. Proteins: Structure, Function and Bioinformatics, 2003, 53, 182-192.	1.5	45
45	Ssk1p Response Regulator Binding Surface on Histidine- Containing Phosphotransfer Protein Ypd1p. Eukaryotic Cell, 2003, 2, 27-33.	3.4	20
46	Interactions of Organic Nitroso Compounds with Metals. Chemical Reviews, 2002, 102, 1019-1066.	23.0	230
47	Histidine kinases and response regulator proteins in two-component signaling systems. Trends in Biochemical Sciences, 2001, 26, 369-376.	3.7	841
48	Functional roles of conserved amino acid residues surrounding the phosphorylatable histidine of the yeast phosphorelay protein YPD1. Molecular Microbiology, 2000, 37, 136-144.	1.2	45
49	Novel Role for an HPt Domain in Stabilizing the Phosphorylated State of a Response Regulator Domain. Journal of Bacteriology, 2000, 182, 6673-6678.	1.0	50
50	Purification, crystallization and preliminary X-ray diffraction analysis of the yeast phosphorelay protein YPD1. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 291-293.	2.5	13
51	Conservation of structure and function among histidine-containing phosphotransfer (HPt) domains as revealed by the crystal structure of YPD1 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1999, 292, 1039-1050.	2.0	87
52	Differential Stabilities of Phosphorylated Response Regulator Domains Reflect Functional Roles of the Yeast Osmoregulatory SLN1 and SSK1 Proteins. Journal of Bacteriology, 1999, 181, 411-417.	1.0	52
53	Purification, crystallization, and preliminary X-ray diffraction analyses of the bacterial chemotaxis receptor modifying enzymes. Proteins: Structure, Function and Bioinformatics, 1995, 21, 345-350.	1.5	11
54	Crystal Structure of the Catalytic Domain of the Chemotaxis Receptor Methylesterase, CheB. Journal of Molecular Biology, 1995, 250, 276-290.	2.0	70

#	Article	IF	CITATIONS
55	Structure of the magnesium-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry, 1993, 32, 13375-13380.	1.2	229
56	Proteins encoded by the trans-acting replication and maintenance regions of broad host range plasmid RK2. Plasmid, 1984, 11, 48-57.	0.4	57