
Christof Wöll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7697357/publications.pdf Version: 2024-02-01

<u>CHRISTOF WÃΩU</u>

#	Article	IF	CITATIONS
1	MOF thin films: existing and future applications. Chemical Society Reviews, 2011, 40, 1081.	18.7	1,197
2	Thin films of metal–organic frameworks. Chemical Society Reviews, 2009, 38, 1418.	18.7	829
3	Step-by-Step Route for the Synthesis of Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2007, 129, 15118-15119.	6.6	811
4	The chemistry and physics of zinc oxide surfaces. Progress in Surface Science, 2007, 82, 55-120.	3.8	733
5	Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chemical Society Reviews, 2017, 46, 5730-5770.	18.7	549
6	Selective Nucleation and Growth of Metalâ^'Organic Open Framework Thin Films on Patterned COOH/CF3-Terminated Self-Assembled Monolayers on Au(111). Journal of the American Chemical Society, 2005, 127, 13744-13745.	6.6	535
7	Growth of aromatic molecules on solid substrates for applications in organic electronics. Journal of Materials Research, 2004, 19, 1889-1916.	1.2	501
8	Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nature Materials, 2009, 8, 481-484.	13.3	500
9	Structure of the catalytically active copper–ceria interfacial perimeter. Nature Catalysis, 2019, 2, 334-341.	16.1	368
10	Growth Mechanism of Metal–Organic Frameworks: Insights into the Nucleation by Employing a Stepâ€by‣tep Route. Angewandte Chemie - International Edition, 2009, 48, 5038-5041.	7.2	359
11	Exchangelike Effects for Closed-Shell Adsorbates: Interface Dipole and Work Function. Physical Review Letters, 2002, 89, 096104.	2.9	323
12	The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Physical Chemistry Chemical Physics, 2008, 10, 7092.	1.3	320
13	Photocatalytic Activity of Bulk <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy. Physical Review Letters, 2011, 106, 138302.	2.9	320
14	Surface Chemistry of Metal–Organic Frameworks at the Liquid–Solid Interface. Angewandte Chemie - International Edition, 2011, 50, 176-199.	7.2	292
15	Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nature Chemistry, 2010, 2, 374-379.	6.6	273
16	Partial Dissociation of Water Leads to Stable Superstructures on the Surface of Zinc Oxide. Angewandte Chemie - International Edition, 2004, 43, 6641-6645.	7.2	253
17	Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009, 84, 230-278.	3.8	249
18	On the Importance of the Headgroup Substrate Bond in Thiol Monolayers:  A Study of Biphenyl-Based Thiols on Gold and Silver. Langmuir, 2001, 17, 1582-1593.	1.6	246

#	Article	IF	CITATIONS
19	Preparation, Modification, and Crystallinity of Aliphatic and Aromatic Carboxylic Acid Terminated Self-Assembled Monolayers. Langmuir, 2002, 18, 3980-3992.	1.6	226
20	Vacuum level alignment at organic/metal junctions: "Cushion―effect and the interface dipole. Applied Physics Letters, 2005, 87, 263502.	1.5	223
21	Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nature Catalysis, 2020, 3, 824-833.	16.1	209
22	High-Throughput Fabrication of Uniform and Homogenous MOF Coatings. Advanced Functional Materials, 2011, 21, 4228-4231.	7.8	208
23	Tunable molecular separation by nanoporous membranes. Nature Communications, 2016, 7, 13872.	5.8	208
24	Photoinduced Chargeâ€Carrier Generation in Epitaxial MOF Thin Films: High Efficiency as a Result of an Indirect Electronic Band Gap?. Angewandte Chemie - International Edition, 2015, 54, 7441-7445.	7.2	206
25	Formation of oriented and patterned films of metal–organic frameworks by liquid phase epitaxy: A review. Coordination Chemistry Reviews, 2016, 307, 391-424.	9.5	193
26	Active Sites on Oxide Surfaces: ZnO-Catalyzed Synthesis of Methanol from CO and H2. Angewandte Chemie - International Edition, 2005, 44, 2790-2794.	7.2	192
27	Covalent Interlinking of an Aldehyde and an Amine on a Au(111) Surface in Ultrahigh Vacuum. Angewandte Chemie - International Edition, 2007, 46, 9227-9230.	7.2	191
28	Enantiopure Metal–Organic Framework Thin Films: Oriented SURMOF Growth and Enantioselective Adsorption. Angewandte Chemie - International Edition, 2012, 51, 807-810.	7.2	189
29	Surface Faceting and Reconstruction of Ceria Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 375-379.	7.2	185
30	Advanced Photoresponsive Materials Using the Metal–Organic Framework Approach. Advanced Materials, 2020, 32, e1905227.	11.1	184
31	A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy. Scientific Reports, 2012, 2, 921.	1.6	183
32	MOFâ€Templated Synthesis of Ultrasmall Photoluminescent Carbonâ€Nanodot Arrays for Optical Applications. Angewandte Chemie - International Edition, 2017, 56, 6853-6858.	7.2	179
33	Selective Growth and MOCVD Loading of Small Single Crystals of MOF-5 at Alumina and Silica Surfaces Modified with Organic Self-Assembled Monolayersâ€. Chemistry of Materials, 2007, 19, 2168-2173.	3.2	174
34	Stability of the polar surfaces of ZnO: A reinvestigation using He-atom scattering. Physical Review B, 2002, 66, .	1.1	167
35	Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO ₂ to CO exhibiting high faradaic efficiency. Journal of Materials Chemistry A, 2016, 4, 15320-15326.	5.2	166
36	The surface barrier phenomenon at the loading of metal-organic frameworks. Nature Communications, 2014, 5, 4562.	5.8	165

#	Article	IF	CITATIONS
37	IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap. Chemical Society Reviews, 2017, 46, 1875-1932.	18.7	165
38	Determination of Site Specific Adsorption Energies of CO on Copper. Catalysis Letters, 2001, 77, 97-101.	1.4	161
39	Tuning the Work Function of Polar Zinc Oxide Surfaces using Modified Phosphonic Acid Selfâ€Assembled Monolayers. Advanced Functional Materials, 2014, 24, 7014-7024.	7.8	160
40	Chemical Activity of Thin Oxide Layers: Strong Interactions with the Support Yield a New Thinâ€Film Phase of ZnO. Angewandte Chemie - International Edition, 2013, 52, 11925-11929.	7.2	158
41	Photoswitching in Two-Component Surface-Mounted Metal–Organic Frameworks: Optically Triggered Release from a Molecular Container. ACS Nano, 2014, 8, 1463-1467.	7.3	158
42	Self-Assembled Monolayers of ï‰-Biphenylalkanethiols on Au(111):  Influence of Spacer Chain on Molecular Packing. Journal of Physical Chemistry B, 2004, 108, 4989-4996.	1.2	157
43	Deprotonation-Driven Phase Transformations in Terephthalic Acid Self-Assembly on Cu(100). Journal of Physical Chemistry B, 2004, 108, 19392-19397.	1.2	156
44	Liquidâ€Phase Epitaxy of Multicomponent Layerâ€Based Porous Coordination Polymer Thin Films of [M(L)(P)0.5] Type: Importance of Deposition Sequence on the Oriented Growth. Chemistry - A European Journal, 2011, 17, 1448-1455.	1.7	155
45	Self-metalation of 2H-tetraphenylporphyrin on Cu(111): An x-ray spectroscopy study. Journal of Chemical Physics, 2012, 136, 014705.	1.2	154
46	A Comprehensive Study of Self-Assembled Monolayers of Anthracenethiol on Gold:Â Solvent Effects, Structure, and Stability. Journal of the American Chemical Society, 2006, 128, 1723-1732.	6.6	150
47	Fabrication of a Carboxyl-Terminated Organic Surface with Self-Assembly of Functionalized Terphenylthiols:Â The Importance of Hydrogen Bond Formation. Journal of the American Chemical Society, 1998, 120, 12069-12074.	6.6	147
48	MOF-on-MOF heteroepitaxy: perfectly oriented [Zn2(ndc)2(dabco)]n grown on [Cu2(ndc)2(dabco)]n thin films. Dalton Transactions, 2011, 40, 4954.	1.6	146
49	A novel method to measure diffusion coefficients in porous metal–organic frameworks. Physical Chemistry Chemical Physics, 2010, 12, 8092.	1.3	141
50	Surfaceâ€Mounted Metal–Organic Frameworks: Crystalline and Porous Molecular Assemblies for Fundamental Insights and Advanced Applications. Advanced Materials, 2019, 31, e1806324.	11.1	134
51	Molecular Mechanisms of Electron-Induced Cross-Linking in Aromatic SAMs. Langmuir, 2009, 25, 7342-7352.	1.6	132
52	The Interaction of Water with the Oxygen-Terminated, Polar Surface of ZnO. Journal of Physical Chemistry B, 2003, 107, 14350-14356.	1.2	131
53	The controlled growth of oriented metal–organic frameworks on functionalized surfaces as followed by scanning force microscopy. Physical Chemistry Chemical Physics, 2008, 10, 7257.	1.3	130
54	Nanoporous Designer Solids with Huge Lattice Constant Gradients: Multiheteroepitaxy of Metal–Organic Frameworks, Nano Letters, 2014, 14, 1526-1529	4.5	130

#	Article	IF	CITATIONS
55	Layer-by-Layer Growth of Oriented Metal Organic Polymers on a Functionalized Organic Surface. Langmuir, 2007, 23, 7440-7442.	1.6	127
56	Diffusion versus Desorption: Complex Behavior of H Atoms on an Oxide Surface. ChemPhysChem, 2008, 9, 253-256.	1.0	127
57	Bonding and Orientation in Self-Assembled Monolayers of Oligophenyldithiols on Au Substrates. Langmuir, 2002, 18, 7766-7769.	1.6	126
58	Surface-mounted metal-organic frameworks for applications in sensing and separation. Microporous and Mesoporous Materials, 2015, 216, 200-215.	2.2	126
59	Photon Upconversion at Crystalline Organic–Organic Heterojunctions. Advanced Materials, 2016, 28, 8477-8482.	11.1	125
60	Conformational Adaptation and Selective Adatom Capturing of Tetrapyridyl-porphyrin Molecules on a Copper (111) Surface. Journal of the American Chemical Society, 2007, 129, 11279-11285.	6.6	122
61	Chemistry of SURMOFs: Layer-Selective Installation of Functional Groups and Post-synthetic Covalent Modification Probed by Fluorescence Microscopy. Journal of the American Chemical Society, 2011, 133, 1734-1737.	6.6	122
62	Defects in MOFs: A Thorough Characterization. ChemPhysChem, 2012, 13, 2025-2029.	1.0	121
63	Coexistence of Different Structural Phases in Thioaromatic Monolayers on Au(111). Langmuir, 2003, 19, 4958-4968.	1.6	120
64	Peptide-Based SAMs that Resist the Adsorption of Proteins. Journal of the American Chemical Society, 2008, 130, 14952-14953.	6.6	120
65	Metal–Support Interactions of Platinum Nanoparticles Decorated N-Doped Carbon Nanofibers for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 82-90.	4.0	120
66	Growth and structure of pentacene films on graphite: Weak adhesion as a key for epitaxial film growth. Physical Review B, 2010, 81, .	1.1	118
67	Photoconductivity in Metal–Organic Framework (MOF) Thin Films. Angewandte Chemie - International Edition, 2019, 58, 9590-9595.	7.2	118
68	Light-Driven Water Splitting for (Bio-)Hydrogen Production: Photosystem 2 as the Central Part of a Bioelectrochemical Device. Photochemistry and Photobiology, 2006, 82, 1385.	1.3	117
69	Ionic Hydrogen Bonds Controlling Two-Dimensional Supramolecular Systems at a Metal Surface. Chemistry - A European Journal, 2007, 13, 3900-3906.	1.7	117
70	Epitaxially grown metal-organic frameworks. Materials Today, 2012, 15, 110-116.	8.3	117
71	Preparation of Freestanding Conjugated Microporous Polymer Nanomembranes for Gas Separation. Chemistry of Materials, 2014, 26, 7189-7193.	3.2	117
72	Structural Characterization of Organothiolate Adlayers on Gold:Â The Case of Rigid, Aromatic Backbones. Langmuir, 2001, 17, 3689-3695.	1.6	116

#	Article	IF	CITATIONS
73	Intercalation in Layered Metal–Organic Frameworks: Reversible Inclusion of an Extended π-System. Journal of the American Chemical Society, 2011, 133, 8158-8161.	6.6	116
74	Fabrication of Highly Uniform Gel Coatings by the Conversion of Surface-Anchored Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 8-11.	6.6	116
75	Transparent films of metal-organic frameworks for optical applications. Microporous and Mesoporous Materials, 2015, 211, 82-87.	2.2	114
76	Two-Dimensional Adatom Gas Bestowing Dynamic Heterogeneity on Surfaces. Angewandte Chemie - International Edition, 2005, 44, 1488-1491.	7.2	112
77	Metal–Organic Framework-Templated Biomaterials: Recent Progress in Synthesis, Functionalization, and Applications. Accounts of Chemical Research, 2019, 52, 1598-1610.	7.6	112
78	On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films. Applied Physics Letters, 2013, 103, .	1.5	111
79	Magnetic Cores with Porous Coatings: Growth of Metalâ€Organic Frameworks on Particles Using Liquid Phase Epitaxy. Advanced Functional Materials, 2013, 23, 1210-1213.	7.8	111
80	O ₂ Activation on Ceria Catalysts—The Importance of Substrate Crystallographic Orientation. Angewandte Chemie - International Edition, 2017, 56, 16399-16404.	7.2	106
81	Spectroscopic evidence for the partial dissociation of H2O on ZnO(101̄0). Physical Chemistry Chemical Physics, 2006, 8, 1521.	1.3	104
82	Methanol synthesis over ZnO: A structure-sensitive reaction?. Physical Chemistry Chemical Physics, 2003, 5, 4736-4742.	1.3	101
83	The interaction of C6H6 and C6H12 with noble metal surfaces: Electronic level alignment and the origin of the interface dipole. Journal of Chemical Physics, 2005, 123, 184109.	1.2	101
84	Molecular Orientation at Rubbed Polyimide Surfaces Determined with X-ray Absorption Spectroscopy: Relevance for Liquid Crystal Alignment. Macromolecules, 1998, 31, 1930-1936.	2.2	100
85	CO2 Activation by ZnO through the Formation of an Unusual Tridentate Surface Carbonate. Angewandte Chemie - International Edition, 2007, 46, 5624-5627.	7.2	98
86	Epitaxial Growth of Pentacene Films on Metal Surfaces. ChemPhysChem, 2004, 5, 266-270.	1.0	97
87	Visualizing the Frontier Orbitals of a Conformationally Adapted Metalloporphyrin. ChemPhysChem, 2008, 9, 89-94.	1.0	96
88	Observation of a Kohn Anomaly in the Surface-Phonon Dispersion Curves of Pt(111). Physical Review Letters, 1985, 55, 2308-2311.	2.9	93
89	Competition as a Design Concept:Â Polymorphism in Self-Assembled Monolayers of Biphenyl-Based Thiols. Journal of the American Chemical Society, 2006, 128, 13868-13878.	6.6	91
90	Redox mediation enabled by immobilised centres in the pores of a metal–organic framework grown by liquid phase epitaxy. Chemical Communications, 2012, 48, 663-665.	2.2	91

#	Article	IF	CITATIONS
91	Photoswitching in nanoporous, crystalline solids: an experimental and theoretical study for azobenzene linkers incorporated in MOFs. Physical Chemistry Chemical Physics, 2015, 17, 14582-14587.	1.3	91
92	Functionalized Coordination Space in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2008, 47, 8164-8168.	7.2	89
93	Determination of Molecular Orientation in Self-Assembled Monolayers Using IR Absorption Intensities: The Importance of Grinding Effects. Langmuir, 2001, 17, 4980-4989.	1.6	84
94	Carbon materials for the positive electrode in all-vanadium redox flow batteries. Carbon, 2014, 78, 220-230.	5.4	83
95	Electric Transport Properties of Surface-Anchored Metal–Organic Frameworks and the Effect of Ferrocene Loading. ACS Applied Materials & Interfaces, 2015, 7, 9824-9830.	4.0	83
96	Chiral Porous Metacrystals: Employing Liquid-Phase Epitaxy to Assemble Enantiopure Metal–Organic Nanoclusters into Molecular Framework Pores. ACS Nano, 2016, 10, 977-983.	7.3	83
97	Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films. Applied Physics Letters, 2012, 101, .	1.5	82
98	FAIR data enabling new horizons for materials research. Nature, 2022, 604, 635-642.	13.7	81
99	Activation of Carbon Dioxide on ZnO Nanoparticles Studied by Vibrational Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 908-914.	1.5	79
100	Probing electrons in TiO2 polaronic trap states by IR-absorption: Evidence for the existence of hydrogenic states. Scientific Reports, 2014, 4, 3808.	1.6	79
101	Grafting Zirconium-Based Metal–Organic Framework UiO-66-NH ₂ Nanoparticles on Cellulose Fibers for the Removal of Cr(VI) Ions and Methyl Orange from Water. ACS Applied Nano Materials, 2019, 2, 5804-5808.	2.4	79
102	Water adsorption on the hydroxylated H-(1 × 1) O-ZnO(0001̄) surface. Physical Chemistry Chemical Physics, 2006, 8, 1505.	1.3	78
103	Selenium as a Key Element for Highly Ordered Aromatic Selfâ€Assembled Monolayers. Angewandte Chemie - International Edition, 2008, 47, 5250-5252.	7.2	78
104	Ionization Energies of Shallow Donor States in ZnO Created by Reversible Formation and Depletion of H Interstitials. Physical Review Letters, 2008, 101, 236401.	2.9	78
105	Stress in Self-Assembled Monolayers: ï‰-Biphenyl Alkane Thiols on Au(111). Journal of Physical Chemistry B, 2005, 109, 10902-10908.	1.2	77
106	Chemical Vapor Deposition and Synthesis on Carbon Nanofibers:Â Sintering of Ferrocene-Derived Supported Iron Nanoparticles and the Catalytic Growth of Secondary Carbon Nanofibers. Chemistry of Materials, 2005, 17, 5737-5742.	3.2	76
107	Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold. Physical Chemistry Chemical Physics, 2010, 12, 4459.	1.3	76
108	Surface properties and graphitization of polyacrylonitrile based fiber electrodes affecting the negative half-cell reaction in vanadium redox flow batteries. Journal of Power Sources, 2016, 321, 210-218.	4.0	76

#	Article	IF	CITATIONS
109	<scp>l</scp> -Cysteine on Ag(111): A Combined STM and X-ray Spectroscopy Study of Anchorage and Deprotonation. Journal of Physical Chemistry C, 2012, 116, 20356-20362.	1.5	75
110	Post-Synthetic Modification of Metal–Organic Framework Thin Films Using Click Chemistry: The Importance of Strained C–C Triple Bonds. Langmuir, 2013, 29, 15958-15964.	1.6	75
111	A new class of epitaxial porphyrin metal–organic framework thin films with extremely high photocarrier generation efficiency: promising materials for all-solid-state solar cells. Journal of Materials Chemistry A, 2016, 4, 12739-12747.	5.2	75
112	Self-assembly of 1-nitronaphthalene on Au(111). Surface Science, 2000, 444, 199-210.	0.8	74
113	Enantioselective adsorption in homochiral metal–organic frameworks: the pore size influence. Chemical Communications, 2015, 51, 8998-9001.	2.2	74
114	High Antimicrobial Activity of Metal–Organic Framework-Templated Porphyrin Polymer Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 1528-1533.	4.0	74
115	Sprayable, Largeâ€Area Metal–Organic Framework Films and Membranes of Varying Thickness. Chemistry - A European Journal, 2017, 23, 2294-2298.	1.7	73
116	Interplay of Electronic and Steric Effects to Yield Lowâ€Temperature CO Oxidation at Metal Single Sites in Defectâ€Engineered HKUSTâ€1. Angewandte Chemie - International Edition, 2020, 59, 10514-10518.	7.2	73
117	Ruthenium Metal–Organic Frameworks with Different Defect Types: Influence on Porosity, Sorption, and Catalytic Properties. Chemistry - A European Journal, 2016, 22, 14297-14307.	1.7	72
118	Thermally activated dewetting of organic thin films: theÂcaseÂofÂpentacene onÂSiO2ÂandÂgold. Applied Physics A: Materials Science and Processing, 2009, 95, 273-284.	1.1	71
119	A new dual-purpose ultrahigh vacuum infrared spectroscopy apparatus optimized for grazing-incidence reflection as well as for transmission geometries. Review of Scientific Instruments, 2009, 80, 113108.	0.6	71
120	Molecular weaving via surface-templated epitaxy of crystalline coordination networks Nature Communications, 2017, 8, 14442.	5.8	70
121	The Biocompatibility of Metal–Organic Framework Coatings: An Investigation on the Stability of SURMOFs with Regard to Water and Selected Cell Culture Media. Langmuir, 2012, 28, 6877-6884.	1.6	68
122	The Surface Science Approach for Understanding Reactions on Oxide Powders: The Importance of IR Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 4731-4734.	7.2	68
123	Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation. Materials, 2012, 5, 1581-1592.	1.3	67
124	Twoâ€dimensional crystal structure of single Langmuir–Blodgett films deposited on noble metal single crystals studied with LEED. Journal of Chemical Physics, 1986, 84, 5200-5204.	1.2	65
125	Probing the interaction of the amino acid alanine with the surface of ZnO. Journal of Colloid and Interface Science, 2009, 338, 16-21.	5.0	65
126	Carbon nanowalls: the next step for physical manifestation of the black body coating. Scientific Reports, 2013, 3, 3328.	1.6	64

#	Article	IF	CITATIONS
127	cis-to-trans isomerization of azobenzene investigated by using thin films of metal–organic frameworks. Physical Chemistry Chemical Physics, 2015, 17, 22721-22725.	1.3	64
128	Proximity Effect in Crystalline Framework Materials: Stackingâ€Induced Functionality in MOFs and COFs. Advanced Functional Materials, 2020, 30, 1908004.	7.8	64
129	Molecular orientation of terephthalic acid assembly on epitaxial graphene: NEXAFS and XPS study. Physical Chemistry Chemical Physics, 2012, 14, 10125.	1.3	63
130	Superexchange Charge Transport in Loaded Metal Organic Frameworks. ACS Nano, 2016, 10, 7085-7093.	7.3	62
131	Resolving the depth coordinate in photoelectron spectroscopy – Comparison of excitation energy variation vs. angular-resolved XPS for the analysis of a self-assembled monolayer model system. Surface Science, 2008, 602, 755-767.	0.8	61
132	MOCVD-Loading of Mesoporous Siliceous Matrices with Cu/ZnO: Supported Catalysts for Methanol Synthesis. Angewandte Chemie - International Edition, 2004, 43, 2839-2842.	7.2	60
133	Influence of Molecular Structure on Phase Transitions:  A Study of Self-Assembled Monolayers of 2-(Aryl)-ethane Thiols. Journal of Physical Chemistry C, 2007, 111, 16909-16919.	1.5	60
134	Surfaceâ€Anchored MOFâ€Based Photonic Antennae. ChemPhysChem, 2012, 13, 2699-2702.	1.0	60
135	Advanced Applications of NEXAFS Spectroscopy for Functionalized Surfaces. Springer Series in Surface Sciences, 2013, , 277-303.	0.3	60
136	Defects as Color Centers: The Apparent Color of Metal–Organic Frameworks Containing Cu ²⁺ -Based Paddle-Wheel Units. ACS Applied Materials & Interfaces, 2017, 9, 37463-37467.	4.0	60
137	The adsorption of hydrogen on the rutile TiO2(110) surface. Physical Chemistry Chemical Physics, 2004, 6, 4203-4207.	1.3	59
138	Post-synthetic modification of epitaxially grown, highly oriented functionalized MOF thin films. Chemical Communications, 2011, 47, 11210.	2.2	59
139	A Multitechnique Study of CO Adsorption on the TiO ₂ Anatase (101) Surface. Journal of Physical Chemistry C, 2015, 119, 21044-21052.	1.5	59
140	Carbonâ^'Carbon Bond Formation on Model Titanium Oxide Surfaces: Identification of Surface Reaction Intermediates by High-Resolution Electron Energy Loss Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 9828-9834.	1.5	58
141	Rational Design of Two-Dimensional Nanoscale Networks by Electrostatic Interactions at Surfaces. ACS Nano, 2010, 4, 1813-1820.	7.3	58
142	Dissociation of formic acid on anatase TiO2(101) probed by vibrational spectroscopy. Catalysis Today, 2012, 182, 12-15.	2.2	58
143	Resistive Switching Nanodevices Based on Metal–Organic Frameworks. ChemNanoMat, 2016, 2, 67-73.	1.5	58
144	Hierarchical assemblies of molecular frameworks—MOF-on-MOF epitaxial heterostructures. Nano Research, 2021, 14, 355-368.	5.8	58

#	Article	IF	CITATIONS
145	Work Function Changes Induced by Charged Adsorbates: Origin of the Polarity Asymmetry. Physical Review Letters, 2008, 100, 126101.	2.9	57
146	Oriented Circular Dichroism Analysis of Chiral Surfaceâ€Anchored Metal–Organic Frameworks Grown by Liquidâ€Phase Epitaxy and upon Loading with Chiral Guest Compounds. Chemistry - A European Journal, 2014, 20, 9879-9882.	1.7	57
147	Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type. Applied Physics Letters, 2015, 107, .	1.5	57
148	Electrically Conductive, Monolithic Metal–Organic Framework–Graphene (MOF@G) Composite Coatings. ACS Applied Materials & Interfaces, 2019, 11, 6442-6447.	4.0	57
149	Interaction of ethylbenzene and styrene with iron oxide model catalyst films at low coverages: A NEXAFS study. Physical Chemistry Chemical Physics, 2000, 2, 5314-5319.	1.3	56
150	Direct monitoring of photo-induced reactions on well-defined metal oxide surfaces using vibrational spectroscopy. Chemical Physics Letters, 2008, 460, 10-12.	1.2	56
151	Adsorption and diffusion in thin films of nanoporous metal–organic frameworks: ferrocene in SURMOF Cu2(ndc)2(dabco). Physical Chemistry Chemical Physics, 2013, 15, 9295.	1.3	56
152	Grafting of Monocarboxylic Substituted Polychlorotriphenylmethyl Radicals onto a COOH-Functionalized Self-Assembled Monolayer through Copper (II) Metal Ions. Langmuir, 2008, 24, 6640-6648.	1.6	54
153	Monolithic High Performance Surface Anchored Metalâ^'Organic Framework Bragg Reflector for Optical Sensing. Chemistry of Materials, 2015, 27, 1991-1996.	3.2	54
154	Interaction of Formaldehyde with the Rutile TiO ₂ (110) Surface: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2016, 120, 12626-12636.	1.5	54
155	Anisotropic energy transfer in crystalline chromophore assemblies. Nature Communications, 2018, 9, 4332.	5.8	54
156	Series of Photoswitchable Azobenzene-Containing Metal–Organic Frameworks with Variable Adsorption Switching Effect. Journal of Physical Chemistry C, 2018, 122, 19044-19050.	1.5	54
157	Tuning the Reactivity of Oxide Surfaces by Chargeâ€Accepting Adsorbates. Angewandte Chemie - International Edition, 2007, 46, 7315-7318.	7.2	53
158	Energy-dispersive X-ray reflectivity and GID for real-time growth studies of pentacene thin films. Thin Solid Films, 2007, 515, 5606-5610.	0.8	53
159	Evidence for photogenerated intermediate hole polarons in ZnO. Nature Communications, 2015, 6, 6901.	5.8	53
160	Structural Analysis of Saturated Alkanethiolate Monolayers on Cu(100):Â Coexistence of Thiolate and Sulfide Species. Langmuir, 2001, 17, 7560-7565.	1.6	52
161	Transition of Molecule Orientation during Adsorption of Terephthalic Acid on Rutile TiO2(110). Journal of Physical Chemistry C, 2009, 113, 17471-17478.	1.5	52
162	Probing the Water Stability Limits and Degradation Pathways of Metal–Organic Frameworks. Chemistry - A European Journal, 2020, 26, 7109-7117.	1.7	50

#	Article	IF	CITATIONS
163	Direct observation of a dispersionless impurity band in hydrogenated graphene. Physical Review B, 2011, 83, .	1.1	49
164	Chemical reactions on metal oxide surfaces investigated by vibrational spectroscopy. Surface Science, 2009, 603, 1589-1599.	0.8	48
165	Asymmetry Induction by Cooperative Intermolecular Hydrogen Bonds in Surface-Anchored Layers of Achiral Molecules. ChemPhysChem, 2006, 7, 2197-2204.	1.0	46
166	IR spectroscopy applied to metal oxide surfaces: adsorbate vibrations and beyond. Advances in Physics: X, 2017, 2, 373-408.	1.5	46
167	Highly Efficient One-Dimensional Triplet Exciton Transport in a Palladium–Porphyrin-Based Surface-Anchored Metal–Organic Framework. ACS Applied Materials & Interfaces, 2019, 11, 15688-15697.	4.0	46
168	Fabrication of a surface plasmon resonance biosensor based on gold nanoparticles chemisorbed onto a 1,10-decanedithiol self-assembled monolayer. Thin Solid Films, 2009, 518, 387-391.	0.8	45
169	Step-by-step growth of highly oriented and continuous seeding layers of [Cu2(ndc)2(dabco)] on bare oxide and nitride substrates. CrystEngComm, 2010, 12, 2086.	1.3	45
170	Optical parameters for characterization of thermal radiation in ceramic sponges – Experimental results and correlation. International Journal of Heat and Mass Transfer, 2014, 79, 655-665.	2.5	44
171	A de novo strategy for predictive crystal engineering to tune excitonic coupling. Nature Communications, 2019, 10, 2048.	5.8	44
172	Oberflähenchemie Metallâ€organischer Gerüste an der Flüssigâ€festâ€Grenzflähe. Angewandte Chemie, 2011, 123, 184-208.	1.6	43
173	Metamorphosis of Heterostructured Surfaceâ€Mounted Metal–Organic Frameworks Yielding Record Oxygen Evolution Mass Activities. Advanced Materials, 2021, 33, e2103218.	11.1	43
174	X-ray absorption spectroscopy (NEXAFS) of polymer surfaces. Fresenius' Journal of Analytical Chemistry, 1997, 358, 89-92.	1.5	42
175	Adsorption of atomic hydrogen on ZnO(101̄0): STM study. Physical Chemistry Chemical Physics, 2006, 8, 1477.	1.3	42
176	Layerâ€by‣ayer Liquidâ€Phase Epitaxy of Crystalline Coordination Polymers at Surfaces. Angewandte Chemie - International Edition, 2009, 48, 6205-6208.	7.2	42
177	Conformational Adaptation in Supramolecular Assembly on Surfaces. ChemPhysChem, 2007, 8, 1782-1786.	1.0	41
178	Postformation Modification of SAMs: Using Click Chemistry to Functionalize Organic Surfaces. Langmuir, 2009, 25, 11480-11485.	1.6	41
179	Evidence for Bandâ€Like Transport in Grapheneâ€Based Organic Monolayers. Advanced Materials, 2010, 22, 384-388.	11.1	41
180	Anomalous Surface Compositions of Stoichiometric Mixed Oxide Compounds. Angewandte Chemie - International Edition, 2010, 49, 8037-8041.	7.2	41

#	Article	IF	CITATIONS
181	ZIFâ€8 SURMOF Membranes Synthesized by Auâ€Assisted Liquid Phase Epitaxy for Application in Gas Separation. Chemie-Ingenieur-Technik, 2016, 88, 1798-1805.	0.4	41
182	Reactivity of ZnO Surfaces toward Maleic Anhydride. Journal of Physical Chemistry B, 2004, 108, 13736-13745.	1.2	40
183	Electrochemically deposited Pd islands on an organic surface: the presence of Coulomb blockade in STM I(V) curves at room temperature. Physical Chemistry Chemical Physics, 2006, 8, 3375-3378.	1.3	40
184	Hydrogen Loading of Oxide Powder Particles: A Transmission IR Study for the Case of Zinc Oxide. ChemPhysChem, 2010, 11, 3604-3607.	1.0	40
185	Chemical activity of oxygen vacancies on ceria: a combined experimental and theoretical study on CeO ₂ (111). Physical Chemistry Chemical Physics, 2014, 16, 24165-24168.	1.3	40
186	Tunable Emission in Heteroepitaxial Ln‣URMOFs. Advanced Functional Materials, 2019, 29, 1903086.	7.8	40
187	Hierarchically Functionalized Magnetic Core/Multishell Particles and Their Postsynthetic Conversion to Polymer Capsules. ACS Nano, 2015, 9, 4219-4226.	7.3	39
188	Interaction of carboxylic acids with rutile TiO2(110): IR-investigations of terephthalic and benzoic acid adsorbed on a single crystal substrate. Surface Science, 2016, 643, 117-123.	0.8	39
189	MOFâ€Hosted Enzymes for Continuous Flow Catalysis in Aqueous and Organic Solvents. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
190	Adsorption of Benzene on Coinage Metals:Â A Theoretical Analysis Using Wavefunction-Based Methodsâ€. Journal of Physical Chemistry A, 2007, 111, 12778-12784.	1.1	38
191	Analysis of surface, subsurface, and bulk hydrogen in ZnO using nuclear reaction analysis. Physical Review B, 2011, 84, .	1.1	38
192	Kinetic Isotope Effect in the Hydrogenation and Deuteration of Graphene. Advanced Functional Materials, 2013, 23, 1628-1635.	7.8	38
193	Carbon dioxide adsorption on a ZnO(101̄0) substrate studied by infrared reflection absorption spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 1672-1678.	1.3	38
194	Boron-Doped Graphene Nanoribbons: Electronic Structure and Raman Fingerprint. ACS Nano, 2018, 12, 7571-7582.	7.3	38
195	The origin of soft vibrational modes of alkanes adsorbed on Cu: An experimental and theoretical investigation. Journal of Chemical Physics, 2003, 118, 5115-5131.	1.2	37
196	Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting. Beilstein Journal of Nanotechnology, 2013, 4, 638-648.	1.5	37
197	Rendering Photoreactivity to Ceria: The Role of Defects. Angewandte Chemie - International Edition, 2017, 56, 14301-14305.	7.2	37
198	Fabrication of Metal–Organic Framework Thin Films Using Programmed Layerâ€byâ€Layer Assembly Techniques. Advanced Materials Technologies, 2019, 4, 1800413.	3.0	37

#	Article	IF	CITATIONS
199	Surface-Anchored Metal–Organic Frameworks as Versatile Resists for Gas-Assisted E-Beam Lithography: Fabrication of Sub-10 Nanometer Structures. ACS Nano, 2018, 12, 3825-3835.	7.3	36
200	Microstructure of thel $\hat{z}\hat{a}^{A}$ Al2O3(112Â $\bar{0}$)surface. Physical Review B, 2002, 65, .	1.1	34
201	Surface anchored metal-organic frameworks as stimulus responsive antifouling coatings. Biointerphases, 2013, 8, 29.	0.6	34
202	Tunable coordinative defects in UHM-3 surface-mounted MOFs for gas adsorption and separation: A combined experimental and theoretical study. Microporous and Mesoporous Materials, 2015, 207, 53-60.	2.2	34
203	Methanol adsorption on monocrystalline ceria surfaces. Journal of Catalysis, 2016, 336, 116-125.	3.1	34
204	Carbon Dioxide Adsorption on CeO ₂ (110): An XPS and NEXAFS Study. ChemPhysChem, 2017, 18, 1874-1880.	1.0	34
205	van der Waals Epitaxial Growth of 2D Metal–Porphyrin Framework Derived Thin Films for Dye‣ensitized Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800985.	1.9	34
206	Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings. Nature Communications, 2019, 10, 5522.	5.8	34
207	ZnO@ZIF-8: Gas sensitive core-shell hetero-structures show reduced cross-sensitivity to humidity. Sensors and Actuators B: Chemical, 2020, 304, 127184.	4.0	34
208	Surface Refaceting Mechanism on Cubic Ceria. Journal of Physical Chemistry Letters, 2020, 11, 7925-7931.	2.1	34
209	Adsorption of hydrogen on the polar O–ZnO surface: a molecular beam study. Physical Chemistry Chemical Physics, 2003, 5, 4962-4967.	1.3	33
210	Fabrication of freeâ€standing ultrathin films of porous metalâ€organic frameworks by liquidâ€phase epitaxy and subsequent delamination. Physica Status Solidi - Rapid Research Letters, 2010, 4, 197-199.	1.2	33
211	The interaction of carbon monoxide with clean and surface-modified zinc oxide nanoparticles: A UHV-FTIRS study. Applied Catalysis A: General, 2011, 391, 31-35.	2.2	33
212	Monolithic, Crystalline MOF Coating: An Excellent Patterning and Photoresist Material. ChemNanoMat, 2015, 1, 338-345.	1.5	33
213	Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks. Catalysis Letters, 2018, 148, 2201-2222.	1.4	33
214	The Adsorption of Cyclopropane and Cyclohexane on Cu(111): An Experimental and Theoretical Investigation on the Nature of the CHâ^'Metal Interaction. Angewandte Chemie - International Edition, 2002, 41, 1735-1737.	7.2	32
215	Does the Surface Matter? Hydrogenâ€Bonded Chain Formation of an Oxalic Amide Derivative in a Two― and Threeâ€Đimensional Environment. ChemPhysChem, 2008, 9, 2522-2530.	1.0	32
216	Dependence of surface properties on adsorbate-substrate distance: Work function changes and binding energy shifts for I/Pt(111). Surface Science, 2009, 603, 273-283.	0.8	32

#	Article	IF	CITATIONS
217	Uniform Ï€â€&ystem Alignment in Thin Films of Templateâ€Grown Dicarbonitrileâ€Oligophenyls. Advanced Functional Materials, 2011, 21, 1631-1642.	7.8	32
218	Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks. Materials, 2015, 8, 3767-3775.	1.3	32
219	The Interaction of Formic Acid with Zinc Oxide: A Combined Experimental and Theoretical Study on Single Crystal and Powder Samples. Topics in Catalysis, 2015, 58, 174-183.	1.3	32
220	Self-Terminated CVD-Functionalization of Organic Self-Assembled Monolayers (SAMs) with Trimethylamine Alane (TMAA). Chemical Vapor Deposition, 1998, 04, 17-21.	1.4	31
221	Combined Theoretical and Experimental Study on the Adsorption of Methanol on the ZnO(101ì0) Surface. Journal of Physical Chemistry A, 2011, 115, 7180-7188.	1.1	31
222	Performance Fabrics Obtained by <i>In Situ</i> Growth of Metal–Organic Frameworks in Electrospun Fibers. ACS Applied Materials & Interfaces, 2021, 13, 12491-12500.	4.0	31
223	Bi ₂ O ₃ nanoparticles encapsulated in surface mounted metal–organic framework thin films. Nanoscale, 2016, 8, 6468-6472.	2.8	30
224	Excitonically Coupled States in Crystalline Coordination Networks. Chemistry - A European Journal, 2017, 23, 14316-14322.	1.7	30
225	Defect Engineering of Copper Paddlewheel-Based Metal–Organic Frameworks of Type NOTT-100: Implementing Truncated Linkers and Its Effect on Catalytic Properties. ACS Applied Materials & Interfaces, 2020, 12, 37993-38002.	4.0	30
226	Two-Dimensional Adatom Gas Bestowing Dynamic Heterogeneity on Surfaces. Angewandte Chemie, 2005, 117, 1512-1515.	1.6	29
227	Supramolecular Organization and Chiral Resolution of <i>p</i> â€Terphenylâ€ <i>m</i> â€Dicarbonitrile on the Ag(111) Surface. ChemPhysChem, 2010, 11, 1446-1451.	1.0	29
228	Monitoring electronic structure changes of TiO2(110) via sign reversal of adsorbate vibrational bands. Physical Chemistry Chemical Physics, 2010, 12, 3649.	1.3	29
229	Interaction of Human Plasma Proteins with Thin Gelatin-Based Hydrogel Films: A QCM-D and ToF-SIMS Study. Biomacromolecules, 2014, 15, 2398-2406.	2.6	29
230	Tuning the Cell Adhesion on Biofunctionalized Nanoporous Organic Frameworks. Advanced Functional Materials, 2016, 26, 8455-8462.	7.8	29
231	Local Environment of Strontium Cations Activating NaTaO ₃ Photocatalysts. ACS Catalysis, 2018, 8, 880-885.	5.5	29
232	Influence of mineralogical and morphological properties on the cation exchange behavior of dioctahedral smectites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 591-599.	2.3	28
233	Chemical Nature of Microfluidically Synthesized AuPd Nanoalloys Supported on TiO ₂ . ACS Catalysis, 2019, 9, 5462-5473.	5.5	28
234	Structure and Chemical Properties of Oxide Nanoparticles Determined by Surface-Ligand IR Spectroscopy. ACS Catalysis, 2020, 10, 168-176.	5.5	28

#	Article	IF	CITATIONS
235	Interaction of Thiadiazole Additives with Metal Surfaces:  Reactions and Thin-Film Formation on Gold as a Model Surface. Langmuir, 2003, 19, 6072-6080.	1.6	27
236	Interfacial systems chemistry: out of the vacuum—through the liquid—into the cell. Physical Chemistry Chemical Physics, 2010, 12, 4273.	1.3	27
237	Identification of Mint Scents Using a QCM Based E-Nose. Chemosensors, 2021, 9, 31.	1.8	27
238	Shape-Selective Synthesis of Intermetallic Pd ₃ Pb Nanocrystals and Enhanced Catalytic Properties in the Direct Synthesis of Hydrogen Peroxide. ACS Catalysis, 2021, 11, 2288-2301.	5.5	27
239	Flame-made Cu/ZnO/Al2O3 catalyst for dimethyl ether production. Catalysis Communications, 2014, 43, 52-56.	1.6	26
240	Localized Conversion of Metal–Organic Frameworks into Polymer Gels via Light-Induced Click Chemistry. Chemistry of Materials, 2017, 29, 5982-5989.	3.2	26
241	Interaction of Water Molecules with the α-Fe ₂ O ₃ (0001) Surface: A Combined Experimental and Computational Study. Journal of Physical Chemistry C, 2019, 123, 8324-8335.	1.5	26
242	Reduction of Copper in Porous Matrixes. Stepwise and Autocatalytic Reduction Routes. Journal of Physical Chemistry B, 2005, 109, 20979-20988.	1.2	25
243	Self-assembled monolayers of benzylmercaptan and para-cyanobenzylmercaptan on gold: surface infrared spectroscopic characterization. Physical Chemistry Chemical Physics, 2010, 12, 4390.	1.3	25
244	Charge carrier mobilities in organic semiconductors: crystal engineering and the importance of molecular contacts. Physical Chemistry Chemical Physics, 2015, 17, 21988-21996.	1.3	25
245	Structural Evolution of α-Fe2O3(0001) Surfaces Under Reduction Conditions Monitored by Infrared Spectroscopy. Frontiers in Chemistry, 2019, 7, 451.	1.8	25
246	Correlation between Composition and Mechanical Properties of Calcium Silicate Hydrates Identified by Infrared Spectroscopy and Density Functional Theory. Journal of Physical Chemistry C, 2019, 123, 10868-10873.	1.5	25
247	Tuning Optical Properties by Controlled Aggregation: Electroluminescence Assisted by Thermallyâ€Activated Delayed Fluorescence from Thin Films of Crystalline Chromophores. Chemistry - A European Journal, 2020, 26, 17016-17020.	1.7	25
248	Sensing Molecules with Metal–Organic Framework Functionalized Graphene Transistors. Advanced Materials, 2021, 33, e2103316.	11.1	25
249	Interfacial Systems Chemistry: Out of the Vacuum—Through the Liquid—Into the Cell. ChemPhysChem, 2010, 11, 3201-3213.	1.0	24
250	Loading of Two Related Metal-Organic Frameworks (MOFs), [Cu2(bdc)2(dabco)] and [Cu2(ndc)2(dabco)], with Ferrocene. Polymers, 2011, 3, 1565-1574.	2.0	24
251	Atomically precise semiconductor—graphene and hBN interfaces by Ge intercalation. Scientific Reports, 2015, 5, 17700.	1.6	24
252	Surface functionalization of conjugated microporous polymer thin films and nanomembranes using orthogonal chemistries. Journal of Materials Chemistry A, 2016, 4, 6815-6818.	5.2	24

#	Article	IF	CITATIONS
253	Porphyrin based metal–organic framework films: nucleation and growth. Journal of Materials Chemistry A, 2020, 8, 25941-25950.	5.2	24
254	Thermal Defect Engineering of Precious Group Metal–Organic Frameworks: A Case Study on Ru/Rh-HKUST-1 Analogues. ACS Applied Materials & Interfaces, 2020, 12, 40635-40647.	4.0	24
255	Metallization of a Thiol-Terminated Organic Surface Using Chemical Vapor Deposition. Langmuir, 2008, 24, 7986-7994.	1.6	23
256	A highly ordered, aromatic bidentate self-assembled monolayer on Au(111): a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2010, 12, 6445.	1.3	23
257	Loading of ionic compounds into metal–organic frameworks: a joint theoretical and experimental study for the case of La ³⁺ . Physical Chemistry Chemical Physics, 2014, 16, 17918-17923.	1.3	23
258	Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry. Nature Communications, 2016, 7, 12888.	5.8	23
259	IR-spectroscopy of CO adsorption on mixed-terminated ZnO surfaces. Surface Science, 2016, 652, 247-252.	0.8	23
260	Inkjet-Printed Photoluminescent Patterns of Aggregation-Induced-Emission Chromophores on Surface-Anchored Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 25754-25762.	4.0	23
261	Bridging the Green Gap: Metal–Organic Framework Heteromultilayers Assembled from Porphyrinic Linkers Identified by Using Computational Screening. Chemistry - A European Journal, 2019, 25, 7847-7851.	1.7	23
262	Oriented Growth of Inâ€Oxo Chain Based Metalâ€Porphyrin Framework Thin Film for Highâ€Sensitive Photodetector. Advanced Science, 2021, 8, 2100548.	5.6	23
263	Chiral Metal–Organic Cluster Induced High Circularly Polarized Luminescence of Metal–Organic Framework Thin Film. Advanced Functional Materials, 2022, 32, .	7.8	23
264	Visualization and functions of surface defects on carbon nanotubes created by catalytic etching. Carbon, 2011, 49, 299-305.	5.4	22
265	Electrochemical investigation of covalently post-synthetic modified SURGEL coatings. Chemical Communications, 2014, 50, 11129-11131.	2.2	22
266	Film Quality and Electronic Properties of a Surfaceâ€Anchored Metalâ€Organic Framework Revealed by using a Multiâ€ŧechnique Approach. ChemElectroChem, 2016, 3, 713-718.	1.7	22
267	Water as a modulator in the synthesis of surface-mounted metal–organic framework films of type HKUST-1. Dalton Transactions, 2018, 47, 16474-16479.	1.6	22
268	Structural Evolution of Water on ZnO(100): From Isolated Monomers via Anisotropic Hâ€Bonded 2D and 3D Structures to Isotropic Multilayers. Angewandte Chemie - International Edition, 2019, 58, 17751-17757.	7.2	22
269	Fabrication of 2D-protein arrays using biotinylated thiols: results from fluorescence microscopy and atomic force microscopy. Physical Chemistry Chemical Physics, 2004, 6, 4358-4362.	1.3	21
270	Kinetically Stable, Flat-Lying Thiolate Monolayers. Angewandte Chemie - International Edition, 2007, 46, 3762-3764.	7.2	21

#	Article	IF	CITATIONS
271	Photoresponsive SAMs on gold fabricated from azobenzene-functionalised asparagusic acid derivatives. Dalton Transactions, 2009, , 8593.	1.6	21
272	Facile Synthesis of Metal-Loaded Porous Carbon Thin Films via Carbonization of Surface-Mounted Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 3526-3531.	1.9	21
273	O ₂ â€Aktivierung an Cerdioxidâ€Katalysatoren – Zur Bedeutung der kristallographischen Orientierung des Substrats. Angewandte Chemie, 2017, 129, 16618-16623.	1.6	21
274	Oxidative polymerization of terthiophene and a substituted thiophene monomer in metal-organic framework thin films. European Polymer Journal, 2018, 109, 162-168.	2.6	21
275	Structure and dynamics of deposited lipid monolayers: Low energy electron diffraction and scattering of thermal energy helium atoms. Thin Solid Films, 1988, 159, 429-434.	0.8	20
276	Comment on â€~â€~Field-emission spectroscopy of single-atom tips''. Physical Review Letters, 1993, 70, 2503-2503.	2.9	20
277	Orientational effects in molecule–surface interactions: bonding directionality versus steric repulsion. Chemical Physics Letters, 1998, 294, 599-604.	1.2	20
278	Molecular Beam Deposition of Perylene on Copper:Â Formation of Ordered Phases. Chemistry of Materials, 2005, 17, 5297-5304.	3.2	20
279	Structure and dynamics of CO overlayers on a hydroxylated metal oxide: The polar ZnO(0001Ì,,) surface. Physical Chemistry Chemical Physics, 2006, 8, 1499.	1.3	20
280	Enhancing Selectivity and Kinetics in Oxidative Photocyclization by Supramolecular Control. Angewandte Chemie - International Edition, 2018, 57, 13662-13665.	7.2	20
281	Polyaramid-Based Flexible Antibacterial Coatings Fabricated Using Laser-Induced Carbonization and Copper Electroplating. ACS Applied Materials & amp; Interfaces, 2020, 12, 53193-53205.	4.0	20
282	Liquidâ€Phase Quasiâ€Epitaxial Growth of Highly Stable, Monolithic UiOâ€66â€NH ₂ MOF thin Films on Solid Substrates. ChemistryOpen, 2020, 9, 524-527.	0.9	20
283	The Influence of the Gold Particle Size on the Catalytic Oxidation of 5-(Hydroxymethyl)furfural. Catalysts, 2020, 10, 342.	1.6	20
284	A Case Study on Biological Activity in a Surface-Bound Multicomponent System:  The Biotinâ^'Streptavidinâ^'Peroxidase System. Journal of Physical Chemistry A, 2007, 111, 12295-12303.	1.1	19
285	IR spectroscopic characterization of SAMs made from a homologous series of pyridine disulfides. Journal of Electron Spectroscopy and Related Phenomena, 2009, 172, 120-127.	0.8	19
286	Vibrational spectroscopic studies on pure and metalâ€covered metal oxide surfaces. Physica Status Solidi (B): Basic Research, 2013, 250, 1204-1221.	0.7	19
287	Electrochromic switching of monolithic Prussian blue thin film devices. Optics Express, 2015, 23, 13725.	1.7	19
288	Negative, anisotropic thermal expansion in monolithic thin films of crystalline metal-organic frameworks. Microporous and Mesoporous Materials, 2016, 222, 241-246.	2.2	19

#	Article	IF	CITATIONS
289	The Electronic Structure and Orientation of Styrene Adsorbed on FeO(111) and Fe3O4(111)A Spectroscopic Investigation. Journal of Physical Chemistry B, 2000, 104, 7694-7701.	1.2	18
290	Small hydrocarbons on metal surfaces: adsorption-induced changes in electronic and geometric structure as seen by X-ray absorption spectroscopy. Journal of Synchrotron Radiation, 2001, 8, 129-135.	1.0	18
291	Organic Molecular Beam Deposition of Oligophenyls on Au(111): A Study by X-ray Absorption Spectroscopy. ChemPhysChem, 2006, 7, 2552-2558.	1.0	18
292	Chemistry in Confined Geometries: Reactions at an Organic Surface. ChemPhysChem, 2007, 8, 657-660.	1.0	18
293	Interpretation of experimental N K NEXAFS of azide, 1,2,3-triazole and terpyridyl groups by DFT spectrum simulations. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 621-624.	0.8	18
294	Glycine adsorption and photo-reaction over ZnO(000Ä«) single crystal. Surface Science, 2014, 624, 112-117.	0.8	18
295	Corrosion of Concrete by Water-Induced Metal–Proton Exchange. Journal of Physical Chemistry C, 2016, 120, 22455-22459.	1.5	18
296	Triptycene-terminated thiolate and selenolate monolayers on Au(111). Beilstein Journal of Nanotechnology, 2017, 8, 892-905.	1.5	18
297	Enhancing the photoluminescence of surface anchored metal–organic frameworks: mixed linkers and efficient acceptors. Physical Chemistry Chemical Physics, 2018, 20, 11564-11576.	1.3	18
298	Programmed Molecular Assembly of Abrupt Crystalline Organic/Organic Heterointerfaces Yielding Metalâ€Organic Framework Diodes with Large Onâ€Off Ratios. Advanced Science, 2021, 8, 2001884.	5.6	18
299	Interplay of structural dynamics and electronic effects in an engineered assembly of pentacene in a metal–organic framework. Chemical Science, 2021, 12, 4477-4483.	3.7	18
300	Orientation of thin liquid crystal films on buffed polyimide alignment layers: A near-edge x-ray absorption fine structure investigation. Journal of Chemical Physics, 2000, 113, 11297-11305.	1.2	17
301	Comment on "lmaging of the Hydrogen Subsurface Site in Rutile <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub>― Physical Review Letters, 2010, 104, 119603; author reply 119604.</mml:math 	2.9	17
302	Self-Assembled Monolayers of Aromatic ω-Aminothiols on Gold: Surface Chemistry and Reactivity. Langmuir, 2010, 26, 3949-3954.	1.6	17
303	MOFâ€Templated Synthesis of Ultrasmall Photoluminescent Carbonâ€Nanodot Arrays for Optical Applications. Angewandte Chemie, 2017, 129, 6957-6962.	1.6	17
304	Infrared Reflection–Absorption Spectroscopy and Density Functional Theory Investigations of Ultrathin ZnO Films Formed on Ag(111). Journal of Physical Chemistry C, 2018, 122, 4963-4971.	1.5	17
305	Metalâ^'Organic Chemical Vapor Deposition of Palladium:  Spectroscopic Study of Cyclopentadienyl-allyl-palladium Deposition on a Palladium Substrate. Chemistry of Materials, 2005, 17, 861-868.	3.2	16
306	Ti–Ni alloys as MH electrodes in Ni–MH accumulators. International Journal of Hydrogen Energy, 2008, 33, 7177-7184.	3.8	16

#	Article	IF	CITATIONS
307	Spatioselective Growth of Metalâ€Organic Framework Nanocrystals on Compositionally Anisotropic Polymer Particles. Advanced Materials, 2014, 26, 2883-2888.	11.1	16
308	Efficient gating of epitaxial boron nitride monolayers by substrate functionalization. Physical Review B, 2015, 92, .	1.1	16
309	Free-Standing Nanomembranes Based on Selective CVD Deposition of Functional Poly- <i>p</i> -xylylenes. ACS Nano, 2015, 9, 1400-1407.	7.3	16
310	Twoâ€inâ€One: λâ€Orthogonal Photochemistry on a Radical Photoinitiating System. Macromolecular Rapid Communications, 2017, 38, 1600598.	2.0	16
311	PhotoleitfÃ ¤ igkeit in Dünnfilmen Metallâ€organischer Gerüste. Angewandte Chemie, 2019, 131, 9691-9696.	1.6	16
312	α-Al2O3-supported ZIF-8 SURMOF membranes: Diffusion mechanism of ethene/ethane mixtures and gas separation performance. Journal of Membrane Science, 2020, 594, 117421.	4.1	16
313	Guest-responsive polaritons in a porous framework: chromophoric sponges in optical QED cavities. Chemical Science, 2020, 11, 7972-7978.	3.7	16
314	On the complexation kinetics for metallization of organic layers: palladium onto a pyridine-terminated araliphatic thiol film. Physical Chemistry Chemical Physics, 2012, 14, 4703.	1.3	15
315	Electronic structure, adsorption geometry, and photoswitchability of azobenzene layers adsorbed on layered crystals. Physical Chemistry Chemical Physics, 2013, 15, 20272.	1.3	15
316	Diverse Multiâ€Functionalized Oligoarenes and Heteroarenes for Porous Crystalline Materials. European Journal of Organic Chemistry, 2019, 2019, 1446-1460.	1.2	15
317	SURMOF Devices Based on Heteroepitaxial Architectures with Whiteâ€Light Emission and Luminescent Thermalâ€Dependent Performance. Advanced Materials Interfaces, 2020, 7, 2000929.	1.9	15
318	Encapsulation of Au ₅₅ Clusters within Surface-Supported Metal–Organic Frameworks for Catalytic Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2021, 4, 522-528.	2.4	15
319	Defect-Engineered Metal–Organic Frameworks: A Thorough Characterization of Active Sites Using CO as a Probe Molecule. Journal of Physical Chemistry C, 2021, 125, 593-601.	1.5	15
320	Reactivity of self-assembled monolayers: formation of organized amino functionalities. Physical Chemistry Chemical Physics, 2000, 2, 1509-1514.	1.3	14
321	Substrate structure dependence of the growth modes of p-quaterphenyl thin films on gold. Thin Solid Films, 2005, 484, 408-414.	0.8	14
322	Water on a close-packed Ru surface: A high-order commensurate adlayer with a high sensitivity towards electron beam damage. Physical Review B, 2007, 76, .	1.1	14
323	Molecules Coining Patterns into a Metal:  The Hard Core of Soft Matter. Chemistry of Materials, 2007, 19, 4228-4233.	3.2	14
324	The impact of recombinant fusion-hydrophobin coated surfaces onE. coliand natural mixed culture biofilm formation. Biofouling, 2011, 27, 1073-1085.	0.8	14

#	Article	IF	CITATIONS
325	Quartz crystal microbalance with dissipation coupled to on-chip MALDI-ToF mass spectrometry as a tool for characterising proteinaceous conditioning films on functionalised surfaces. Analytica Chimica Acta, 2013, 802, 95-102.	2.6	14
326	Linear Chains of Magnetic Ions Stacked with Variable Distance: Ferromagnetic Ordering with a Curie Temperature above 20â€K. Angewandte Chemie - International Edition, 2016, 55, 12683-12687.	7.2	14
327	OberflÃ e henfacettierung und Rekonstruktion von Ceroxid―Nanopartikeln. Angewandte Chemie, 2017, 129, 382-387.	1.6	14
328	Dynamic Protein Adsorption onto Dendritic Polyglycerol Sulfate Self-Assembled Monolayers. Langmuir, 2018, 34, 10302-10308.	1.6	14
329	Avoiding the Center‧ymmetry Trap: Programmed Assembly of Dipolar Precursors into Porous, Crystalline Molecular Thin Films. Advanced Materials, 2021, 33, e2103287.	11.1	14
330	Organic Surface Science: Creating Order And Complexity Using Self-Assembly. Phase Transitions, 2003, 76, 291-305.	0.6	13
331	A gold-containing TiO complex: a crystalline molecular precursor as an alternative route to Au/TiO2 composites. Dalton Transactions, 2008, , 6106.	1.6	13
332	CO2 Adlayers on the Mixed Terminated ZnO(10-10) Surface Studied by He Atom Scattering, Photoelectron Spectroscopy and Ab Initio Electronic Structure Calculations. Zeitschrift Fur Physikalische Chemie, 2008, 222, 891-915.	1.4	13
333	Hydration of Concrete: The First Steps. Chemistry - A European Journal, 2018, 24, 8603-8608.	1.7	13
334	Electrolytic Conversion of Sacrificial Metal–Organic Framework Thin Films into an Electrocatalytically Active Monolithic Oxide Coating for the Oxygenâ€Evolution Reaction. Energy Technology, 2019, 7, 1900967.	1.8	13
335	Conductive Metal–Organic Framework Thin Film Hybrids by Electropolymerization of Monosubstituted Acetylenes. ACS Applied Materials & Interfaces, 2020, 12, 30972-30979.	4.0	13
336	Stability of Monolithic MOF Thin Films in Acidic and Alkaline Aqueous Media. Membranes, 2021, 11, 207.	1.4	13
337	Vibrational Frequencies of Cerium-Oxide-Bound CO: A Challenge for Conventional DFT Methods. Physical Review Letters, 2020, 125, 256101.	2.9	13
338	A Multi‧cale Approach for Modeling the Optical Response of Molecular Materials Inside Cavities. Advanced Materials, 2022, 34, e2200350.	11.1	13
339	Adsorption of linear alkanes on Cu(111): Temperature and chain-length dependence of the softened vibrational mode. Journal of Chemical Physics, 2007, 126, 194707.	1.2	12
340	Interfacial Systems Chemistry: Towards the Remote Control of Surface Properties. Angewandte Chemie - International Edition, 2009, 48, 8406-8408.	7.2	12
341	Thermal behavior of MOCVD-grown Cu-clusters on ZnO(101̄0). Physical Chemistry Chemical Physics, 2012, 14, 1654-1659.	1.3	12
342	Synthesis and spectroscopic characterization of alkali–metal intercalated ZrSe ₂ . Dalton Transactions, 2018, 47, 2986-2991.	1.6	12

#	Article	IF	CITATIONS
343	CO adsorption on the calcite(10.4) surface: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2021, 23, 7696-7702.	1.3	12
344	Kinematic effects in the Debye-Waller factor and sticking probabilities in low-energy atom-surface scattering. Journal of Physics Condensed Matter, 2002, 14, 5913-5932.	0.7	11
345	Determination of the lateral Xe-Xe potential in a single xenon layer adsorbed on Cu(110) from surface phonon dispersion measurements. Physical Review B, 2003, 68, .	1.1	11
346	Fabrication of an Amino-Terminated Organic Surface by Chemical Conversion of a Nitro-Terminated Self-Assembled Monolayer. Zeitschrift Fur Physikalische Chemie, 2008, 222, 965-978.	1.4	11
347	High-quality graphene on single crystal Ir(1 1 1) films on Si(1 1 1) wafers: Synthesis and multi-spectroscopic characterization. Carbon, 2015, 81, 167-173.	5.4	11
348	Water‣table Nanoporous Polymer Films with Excellent Proton Conductivity. Macromolecular Rapid Communications, 2018, 39, 1700676.	2.0	11
349	Design of Metal-Organic Framework Templated Materials Using High-Throughput Computational Screening. Molecules, 2020, 25, 4875.	1.7	11
350	Thermally Driven Ag–Au Compositional Changes at the Ligament Surface in Nanoporous Gold: Implications for Electrocatalytic Applications. ACS Applied Nano Materials, 2020, 3, 2197-2206.	2.4	11
351	Application of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) in an in-situ analysis of the stability of the surface-supported metal-organic framework HKUST-1 in water, methanol and pyridine atmospheres. Journal of Electron Spectroscopy and Related Phenomena, 2021, 247, 147042.	0.8	11
352	In Deuterated Water the Unspecific Adsorption of Proteins Is Significantly Slowed Down:Â Results of an SPR Study Using Model Organic Surfaces. Langmuir, 2005, 21, 9017-9019.	1.6	10
353	Photoinduced growth of Cu nanoparticles on ZnO from CuCl2 in methanol. Journal of Nanoparticle Research, 2007, 9, 491-496.	0.8	10
354	Ionic adsorbates on metal surfaces. International Journal of Quantum Chemistry, 2010, 110, 2844-2859.	1.0	10
355	Improving the Loading Capacity of Metal–Organic Framework Thin Films Using Optimized Linkers. ACS Applied Materials & Interfaces, 2016, 8, 24699-24702.	4.0	10
356	Synthesis, Transfer, and Gas Separation Characteristics of MOF-Templated Polymer Membranes. Membranes, 2019, 9, 124.	1.4	10
357	Modular Synthesis of <i>trans</i> â€A ₂ B ₂ â€Porphyrins with Terminal Esters: Systematically Extending the Scope of Linear Linkers for Porphyrinâ€Based MOFs. Chemistry - A European Journal, 2021, 27, 1390-1401.	1.7	10
358	Deposition of Palladium from a Cylcopentadienyl-allyl-palladium Precursor on Si-Based Substrates with Various Pretreatments: The Role of Surface Si-OH and Si-H Species Studied by X-Ray Photoelectron Spectroscopy. Chemical Vapor Deposition, 2005, 11, 355-361.	1.4	9
359	Immobilization of Biotinylated hGBP1 in a Defined Orientation on Surfaces Is Crucial for Uniform Interaction with Analyte Proteins and Catalytic Activity. Langmuir, 2012, 28, 6411-6418.	1.6	9
360	Spontaneous Change in Molecular Orientation at Order–Disorder Transition of Tetracene on Ag(111). Journal of Physical Chemistry C, 2013, 117, 9212-9222.	1.5	9

#	Article	IF	CITATIONS
361	Temperature Effects in the Vibrational Spectra of Self-Assembled Monolayers. Physical Review Letters, 2013, 111, 086102.	2.9	9
362	Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers. Applied Physics Letters, 2015, 107, .	1.5	9
363	Synthesis of Functionalized Azobiphenyl―and Azoterphenyl―Ditopic Linkers: Modular Building Blocks for Photoresponsive Smart Materials. ChemistryOpen, 2019, 8, 743-759.	0.9	9
364	Exciton Coupling and Conformational Changes Impacting the Excited State Properties of Metal Organic Frameworks. Molecules, 2020, 25, 4230.	1.7	9
365	Zusammenwirken elektronischer und sterischer Effekte bei der Tieftemperaturâ€COâ€Oxidation an Einzelatomâ€Metallzentren in defektâ€manipuliertem HKUSTâ€1. Angewandte Chemie, 2020, 132, 10600-10604	.1.6	9
366	MOFSocialNet: Exploiting Metal-Organic Framework Relationships via Social Network Analysis. Nanomaterials, 2022, 12, 704.	1.9	9
367	Determination of molecular orientation in ultrathin liquid crystal. films on solid substrates using X-ray absorption spectroscopy. Applied Physics A: Materials Science and Processing, 1997, 65, 231-234.	1.1	8
368	Thermoelectric Properties of Highly Ordered Metal-Organic Framework Films. ECS Transactions, 2016, 75, 119-126.	0.3	8
369	Facile loading of thin-film surface-anchored metal-organic frameworks with Lewis-base guest molecules. Materials Chemistry Frontiers, 2017, 1, 1888-1894.	3.2	8
370	Reaction of porphyrin-based surface-anchored metal–organic frameworks caused by prolonged illumination. Physical Chemistry Chemical Physics, 2018, 20, 29142-29151.	1.3	8
371	Tailoring the Strength of Nanoporous Gold by Self-Assembled Monolayers of Alkanethiols. ACS Applied Nano Materials, 2018, 1, 6613-6621.	2.4	8
372	Introducing electrical conductivity to metal–organic framework thin films by templated polymerization of methyl propiolate. Nanoscale, 2020, 12, 24419-24428.	2.8	8
373	Studying ZIF-8 SURMOF Thin Films with a Langatate Crystal Microbalance: Single-Component Gas Adsorption Isotherms Measured at Elevated Temperatures and Pressures. Langmuir, 2020, 36, 8444-8450.	1.6	8
374	Automated Virtual Design of Organic Semiconductors Based on Metal-Organic Frameworks. Frontiers in Materials, 2022, 9, .	1.2	8
375	Influence of contact metals on the performance and morphology of pentacene bottom-contact field-effect transistors. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2107-2109.	1.3	7
376	He atom scattering from ZnO surfaces: calculation of diffraction peak intensities using the close-coupling approach. Journal of Physics Condensed Matter, 2010, 22, 304011.	0.7	7
377	Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes. Beilstein Journal of Nanotechnology, 2016, 7, 102-110.	1.5	7
378	Doping-Induced Electron Transfer at Organic/Oxide Interfaces: Direct Evidence from Infrared Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 4511-4516.	1.5	7

#	Article	IF	CITATIONS
379	Surfaceâ€Supported Metalâ€Organic Framework as Lowâ€Dielectricâ€Constant Thin Films for Novel Hybrid Electronics. Advanced Electronic Materials, 2022, 8, .	2.6	7
380	Human guanylate-binding protein 1 as a model system investigated by several surface techniques. Biointerphases, 2010, 5, 131-138.	0.6	6
381	Meta-Positioning of Carbonitrile Functional Groups Induces Interfacial Edge-On Phase of Oligophenyl Derivatives. Journal of Physical Chemistry C, 2014, 118, 2622-2633.	1.5	6
382	Polarization-dependent vibrational shifts on dielectric substrates. Physical Chemistry Chemical Physics, 2020, 22, 17129-17133.	1.3	6
383	25 Jahre retikulÃre Chemie. Angewandte Chemie, 2021, 133, 24142.	1.6	6
384	Roomâ€Temperature Negative Differential Resistance in Surfaceâ€Supported Metalâ€Organic Framework Vertical Heterojunctions. Small, 2021, 17, e2101475.	5.2	6
385	Dynamic Structural Evolution of Ceria-Supported Pt Particles: A Thorough Spectroscopic Study. Journal of Physical Chemistry C, 2022, 126, 9051-9058.	1.5	6
386	Chemical properties of hydrogen-bonded organic bilayers fabricated via self-assembly of COOH-functionalised oligophenylthiols on Au substrates. Materials Science and Engineering C, 1999, 8-9, 431-435.	3.8	5
387	Maßgeschneiderte Organische Oberflähen. Dünnstschichten. Chemie in Unserer Zeit, 2008, 42, 128-141.	0.1	5
388	Elucidating elementary processes at Cu/ZnO interfaces: A microscopical approach. Physica Status Solidi (B): Basic Research, 2013, 250, 1071-1080.	0.7	5
389	Fabrication of SPR Nanosensor Using Gold Nanoparticles and Self-Assembled Monolayer Technique for Detection of Cu ²⁺ in an Aqueous Solution. Journal of Dispersion Science and Technology, 2014, 35, 717-724.	1.3	5
390	Verbesserung der SelektivitĤund Kinetik bei der photooxidativen Zyklisierung mittels supramolekularer Kontrolle. Angewandte Chemie, 2018, 130, 13850-13854.	1.6	5
391	Chemical Reactivity of Supported ZnO Clusters: Undercoordinated Zinc and Oxygen Atoms as Active Sites. ChemPhysChem, 2020, 21, 2553-2564.	1.0	5
392	Sniff Species: SURMOF-Based Sensor Array Discriminates Aromatic Plants beyond the Genus Level. Chemosensors, 2021, 9, 171.	1.8	5
393	Photoinduced Reactions of a Carbene Precursor with Chemisorbed CO on a Metal Surface: Diphenyldiazomethane on CO-Covered Ru(0001). Journal of Physical Chemistry B, 2004, 108, 14025-14031.	1.2	4
394	The thermally induced interaction of Cu and Au with ZnO single crystal surfaces. Physica Status Solidi (B): Basic Research, 2013, 250, 1222-1234.	0.7	4
395	Water adsorption on râ€TiO ₂ (110): Presence of a wellâ€defined (1 × 1)â€structure as ev Heâ€atom scattering. Physica Status Solidi (B): Basic Research, 2013, 250, 1235-1241.	videnced by 0.7	^y 4
396	Photoaktivierung von Cerdioxid: die Rolle von Defekten. Angewandte Chemie, 2017, 129, 14491-14495.	1.6	4

23

#	Article	IF	CITATIONS
397	Electrostatic Design of Polar Metal–Organic Framework Thin Films. Nanomaterials, 2020, 10, 2420.	1.9	4
398	Antenna Doping: The Key for Achieving Efficient Optical Wavelength Conversion in Crystalline Chromophoric Heterolayers. Advanced Materials Interfaces, 2021, 8, 2100262.	1.9	4
399	Modeling the Layer-by-Layer Growth of HKUST-1 Metal-Organic Framework Thin Films. Nanomaterials, 2021, 11, 1631.	1.9	4
400	Spectroscopic Investigation of Bianthrylâ€Based Metal–Organic Framework Thin Films and Their Photoinduced Topotactic Transformation. Advanced Materials Interfaces, 2022, 9, .	1.9	4
401	Herstellung organischer Dünnstschichten. Chemie in Unserer Zeit, 1998, 32, 294-301.	0.1	3
402	A definitive analysis of the Rydberg and valence anti-bonding character of states in the O K-edge of H2O. Chemical Physics Letters, 2006, 428, 207-212.	1.2	3
403	Anomalously Low Probabilities for Rotational Excitation in HD–Surface Scattering. ChemPhysChem, 2006, 7, 1015-1018.	1.0	3
404	Influence of OH groups on charge transport across organic–organic interfaces: a systematic approach employing an "ideal―device. Physical Chemistry Chemical Physics, 2010, 12, 4317.	1.3	3
405	Direct Evidence of the Temperature-Induced Molecular Reorientation in Tetracene Thin Films on AlO _{<i>x</i>} /Ni ₃ Al(111). Journal of Physical Chemistry C, 2014, 118, 22678-22682.	1.5	3
406	Layer-by-layer Synthesis and Transfer of Freestanding Conjugated Microporous Polymer Nanomembranes. Journal of Visualized Experiments, 2015, , e53324.	0.2	3
407	Fundamentals of Surface and Catalytic Reactions for Energy Applications. Topics in Catalysis, 2015, 58, 67-69.	1.3	3
408	Facile preparation of Au(111)/mica substrates for high-quality graphene nanoribbon synthesis. Physica Status Solidi (B): Basic Research, 2016, 253, 2362-2365.	0.7	3
409	Structural Evolution of Water on ZnO(100): From Isolated Monomers via Anisotropic Hâ€Bonded 2D and 3D Structures to Isotropic Multilayers. Angewandte Chemie, 2019, 131, 17915-17921.	1.6	3
410	Mobility of charge carriers in self-assembled monolayers. Beilstein Journal of Nanotechnology, 2019, 10, 2449-2458.	1.5	3
411	MOFâ€hosted enzymes for continuous flow catalysis in aqueous and organic solvents. Angewandte Chemie, 0, , .	1.6	3
412	Surface grafting of a dense and rigid coordination polymer based on tri-para-carboxy-polychlorotriphenylmethyl radical and copper acetate. Journal of Materials Chemistry C, 2013, 1, 793-800.	2.7	2
413	Surfactant modified platinum based fuel cell cathode studied by X-ray absorption spectroscopy. Journal of Catalysis, 2018, 364, 282-290.	3.1	2
414	Materials Research in the Information Age. Advanced Materials, 2019, 31, e1902591.	11.1	2

#	Article	IF	CITATIONS
415	Direct Synthesis of ZIFâ€8 on Transmission Electron Microscopy Grids Allows Structure Analysis and 3D Reconstruction. Particle and Particle Systems Characterization, 2020, 37, 2000209.	1.2	2
416	Photoinduced Delamination of Metal–Organic Framework Thin Films by Spatioselective Generation of Reactive Oxygen Species. ACS Applied Materials & Interfaces, 2021, 13, 57768-57773.	4.0	2
417	Bulk and Surface Investigation of Photooriented Polymer Films. Molecular Crystals and Liquid Crystals, 2001, 368, 461-468.	0.3	1
418	Preface: phys. stat. sol. (a) 205/3. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 407-408.	0.8	1
419	Spectroscopic Characterization and Deliberate Modification of a Single Molecule by Tunneling of Electrons. Angewandte Chemie - International Edition, 2008, 47, 1364-1366.	7.2	1
420	SURMOFs: Liquid-Phase Epitaxy of Metal-Organic Frameworks on Surfaces. , 2016, , 523-550.		1
421	MOF-templated synthesis of 3D Bi2O3 supracrystals with bcc packing. Nanoscale, 2018, 10, 17099-17104.	2.8	1
422	On the integration of dielectrometry into electrochemical impedance spectroscopy to obtain characteristic properties of a dielectric thin film. Electroanalysis, 0, , .	1.5	1
423	Crystalline assembly of perylene in metal–organic framework thin film: J-aggregate or excimer? Insight into the electronic structure. Journal of Physics Condensed Matter, 2021, 33, 034001.	0.7	1
424	N ₂ O Adsorption and Photochemistry on Ceria Surfaces. Journal of Physical Chemistry C, 2022, 126, 2253-2263.	1.5	1
425	Chemical processes at oxide surfaces. Physical Chemistry Chemical Physics, 2006, 8, 1475.	1.3	0
426	Reply to a comment of J. Zemek, Prague, regarding the paper "resolving the depth coordinate in photoelectron spectroscopy – comparison of excitation energy variation vs. angular-resolved XPS for the analysis of a self-assembled monolayer model system― Surface Science, 2008, 602, 3634-3635.	0.8	0
427	Mit variablem Abstand gestapelte lineare Ketten magnetischer Ionen: ferromagnetische Ordnung mit einer Curieâ€Temperatur von über 20â€K. Angewandte Chemie, 2016, 128, 12874-12879.	1.6	0
428	Innentitelbild: Structural Evolution of Water on ZnO(100): From Isolated Monomers via Anisotropic Hâ€Bonded 2D and 3D Structures to Isotropic Multilayers (Angew. Chem. 49/2019). Angewandte Chemie, 2019, 131, 17646-17646.	1.6	0
429	Probing UV photo-oxidation on oxide surfaces. SPIE Newsroom, 0, , .	0.1	0