Peter Toth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7697175/publications.pdf

Version: 2024-02-01

233125 201385 3,114 56 27 45 citations h-index g-index papers 56 56 56 3329 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1-H2O.	1.5	345
2	Obesity in Aging Exacerbates Blood-Brain Barrier Disruption, Neuroinflammation, and Oxidative Stress in the Mouse Hippocampus: Effects on Expression of Genes Involved in Beta-Amyloid Generation and Alzheimer's Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1212-1226.	1.7	250
3	Hypertension-induced cognitive impairment: from pathophysiology to public health. Nature Reviews Nephrology, 2021, 17, 639-654.	4.1	192
4	Age-Related Autoregulatory Dysfunction and Cerebromicrovascular Injury in Mice with Angiotensin II-induced Hypertension. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1732-1742.	2.4	183
5	Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biology, 2019, 24, 101192.	3.9	181
6	Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H299-H308.	1.5	158
7	Aging Exacerbates Obesity-induced Cerebromicrovascular Rarefaction, Neurovascular Uncoupling, and Cognitive Decline in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1339-1352.	1.7	146
8	Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H292-H306.	1.5	128
9	<scp>IGF</scp> â€ 1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell, 2015, 14, 1034-1044.	3.0	121
10	Aging exacerbates hypertensionâ€induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell, 2015, 14, 400-408.	3.0	116
11	Pharmacologically-Induced Neurovascular Uncoupling is Associated with Cognitive Impairment in Mice. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1871-1881.	2.4	105
12	Insulin-like growth factor-1 in CNS and cerebrovascular aging. Frontiers in Aging Neuroscience, 2013, 5, 27.	1.7	98
13	IGF-1 Deficiency Impairs Cerebral Myogenic Autoregulation in Hypertensive Mice. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1887-1897.	2.4	90
14	Role of 20-HETE, TRPC channels, and BK _{Ca} in dysregulation of pressure-induced Ca ²⁺ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1698-H1708.	1.5	83
15	Purinergic glio-endothelial coupling during neuronal activity: role of P2Y ₁ receptors and eNOS in functional hyperemia in the mouse somatosensory cortex. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1837-H1845.	1.5	74
16	Isolated Human and Rat Cerebral Arteries Constrict to Increases in Flow: Role of 20-HETE and TP Receptors. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2096-2105.	2.4	71
17	Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. Age, 2016, 38, 273-289.	3.0	70
18	Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer's disease using functional laser speckle contrast imaging. GeroScience, 2017, 39, 465-473.	2.1	70

#	Article	IF	CITATIONS
19	Growth Hormone and IGF-1 Deficiency Exacerbate High-Fat Diet-Induced Endothelial Impairment in Obese Lewis Dwarf Rats: Implications for Vascular Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 553-564.	1.7	59
20	Aging Exacerbates Pressure-Induced Mitochondrial Oxidative Stress in Mouse Cerebral Arteries: Figure 1 Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1355-1359.	1.7	59
21	Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1124-H1140.	1.5	56
22	Aging Impairs Myogenic Adaptation to Pulsatile Pressure in Mouse Cerebral Arteries. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 527-530.	2.4	54
23	Cerebral venous congestion promotes blood-brain barrier disruption and neuroinflammation, impairing cognitive function in mice. GeroScience, 2019, 41, 575-589.	2.1	47
24	Traumatic Brain Injury Impairs Myogenic Constriction of Cerebral Arteries: Role of Mitochondria-Derived H ₂ O ₂ and TRPV4-Dependent Activation of BK _{ca} Channels. Journal of Neurotrauma, 2018, 35, 930-939.	1.7	42
25	Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice. GeroScience, 2021, 43, 2427-2440.	2.1	40
26	IGF-1 Deficiency Promotes Pathological Remodeling of Cerebral Arteries: A Potential Mechanism Contributing to the Pathogenesis of Intracerebral Hemorrhages in Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 446-454.	1.7	37
27	Age-Related Decline of Autocrine Pituitary Adenylate Cyclase-Activating Polypeptide Impairs Angiogenic Capacity of Rat Cerebromicrovascular Endothelial Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 665-674.	1.7	36
28	Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer's disease. GeroScience, 2020, 42, 1685-1698.	2.1	33
29	Single Mild Traumatic Brain Injury Induces Persistent Disruption of the Blood-Brain Barrier, Neuroinflammation and Cognitive Decline in Hypertensive Rats. International Journal of Molecular Sciences, 2019, 20, 3223.	1.8	21
30	Endothelin-1-Induced Focal Cerebral Ischemia in the Growth Hormone/IGF-1 Deficient Lewis Dwarf Rat. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1353-1362.	1.7	18
31	Repeated Valsalva maneuvers promote symptomatic manifestations of cerebral microhemorrhages: implications for the pathogenesis of vascular cognitive impairment in older adults. GeroScience, 2018, 40, 485-496.	2.1	18
32	Traumatic brain injury-induced cerebral microbleeds in the elderly. GeroScience, 2021, 43, 125-136.	2.1	17
33	Hypertension Exacerbates Cerebrovascular Oxidative Stress Induced by Mild Traumatic Brain Injury: Protective Effects of the Mitochondria-Targeted Antioxidative Peptide SS-31. Journal of Neurotrauma, 2019, 36, 3309-3315.	1.7	15
34	Prostaglandin E2, a postulated mediator of neurovascular coupling, at low concentrations dilates whereas at higher concentrations constricts human cerebral parenchymal arterioles. Prostaglandins and Other Lipid Mediators, 2020, 146, 106389.	1.0	12
35	Effect of Growth Hormone on Neuropsychological Outcomes and Quality of Life of Patients with Traumatic Brain Injury: A Systematic Review. Journal of Neurotrauma, 2021, 38, 1467-1483.	1.7	11
36	Microalbuminuria, Indicated by Total versus Immunoreactive Urinary Albumins, in Acute Ischemic Stroke Patients. Journal of Stroke and Cerebrovascular Diseases, 2011, 20, 510-516.	0.7	10

#	Article	IF	CITATIONS
37	Cerebral venous congestion exacerbates cerebral microhemorrhages in mice. GeroScience, 2022, 44, 805-816.	2.1	10
38	Hypertension-Induced Enhanced Myogenic Constriction of Cerebral Arteries Is Preserved after Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 2315-2319.	1.7	9
39	Direct myosin-2 inhibition enhances cerebral perfusion resulting in functional improvement after ischemic stroke. Theranostics, 2020, 10, 5341-5356.	4.6	9
40	Small Fiber Neuropathy: Clinicopathological Correlations. Behavioural Neurology, 2020, 2020, 1-7.	1.1	7
41	Molecular Pathomechanisms of Impaired Flow-Induced Constriction of Cerebral Arteries Following Traumatic Brain Injury: A Potential Impact on Cerebral Autoregulation. International Journal of Molecular Sciences, 2021, 22, 6624.	1.8	5
42	The role of transient receptor potential channels in cerebral myogenic autoregulation in hypertension and aging. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H159-H161.	1.5	4
43	IGFâ€1 deficiency promotes pathological remodeling of cerebral arteries: a potential mechanism contributing to the pathogenesis of intracerebral hemorrhages in aging. FASEB Journal, 2018, 32, 711.8.	0.2	2
44	Assessment of endothelial function in leptomeningeal arterioles derived from patients with Alzheimer's disease and vascular cognitive impairment. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H790-H793.	1.5	1
45	The Effect of Mild Traumatic Brain Injury on Cerebral Microbleeds in Aging. Frontiers in Aging Neuroscience, 2021, 13, 717391.	1.7	1
46	Errors and Consequences of Inaccurate Estimation of Mean Blood Flow Velocity in Cerebral Arteries. Acta Neurochirurgica Supplementum, 2021, 131, 23-25.	0.5	0
47	Usability of Noninvasive Counterparts of Traditional Autoregulation Indices in Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2021, 131, 163-166.	0.5	0
48	Correlation between acute stroke and microalbuminuria. Potential role of underlying systemic microvascular endothelial disease. FASEB Journal, 2009, 23, 613.9.	0.2	0
49	Flow/shear stressâ€induced constriction of rat middle cerebral artery. FASEB Journal, 2010, 24, 976.1.	0.2	0
50	Role of endothelial surface layer in mediation of flowâ€induced dilation of isolated arterioles. FASEB Journal, 2010, 24, 975.15.	0.2	0
51	Agingâ€induced changes in angiotensin llâ€induced contractions and tachyphylaxis of isolated carotid arteries. FASEB Journal, 2010, 24, 775.1.	0.2	0
52	Liverâ€specific knockdown of IGFâ€1 decreases vascular oxidative stress resistance by impairing the Nrf2â€dependent antioxidant response. FASEB Journal, 2011, 25, 1093.6.	0.2	0
53	Aging exacerbates microvascular endothelial damage induced by inflammatory factors present in the circulation during sepsis. FASEB Journal, 2012, 26, 1058.11.	0.2	0
54	In isolated vessels H2S is a less effective scavenger of exogenous superoxide than SOD. FASEB Journal, 2013, 27, 900.2.	0.2	0

PETER TOTH

#	Article	IF	CITATIONS
55	Resveratrol Treatment Rescues Neurovascular Coupling in Aged Mice: Role of Improved Cerebromicrovascular Endothelial Function and Downâ€Regulation of NADPH Oxidase. FASEB Journal, 2015, 29, 787.6.	0.2	O
56	Cerebral venous congestion promotes bloodâ€brain barrier disruption and neuroinflammation, impairing cognitive function in mice FASEB Journal, 2020, 34, 1-1.	0.2	0