Erdin Ibraim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7696755/publications.pdf

Version: 2024-02-01

201575 243529 2,057 62 27 44 h-index citations g-index papers 1197 66 66 66 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Strength and stiffness of compacted chalk putty–cement blends. Acta Geotechnica, 2022, 17, 2955-2969.	2.9	7
2	Sand-Fly Ash-Lime Blends: Mechanical Behavior under Multiaxial Stress Condition. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	5
3	Stiffness of granular soils under long-term multiaxial cyclic loading. Geotechnique, 2021, 71, 795-811.	2.2	6
4	Studying hydraulic conductivity of asphalt concrete using a database. Transportation Engineering, 2021, 3, 100040.	2.3	4
5	Stiffness of artificially cemented sands: insight on characterisation through empirical power relationships. Road Materials and Pavement Design, 2021, 22, 1469-1479.	2.0	10
6	3D FE-Informed Laboratory Soil Testing for the Design of Offshore Wind Turbine Monopiles. Journal of Marine Science and Engineering, 2021, 9, 101.	1.2	11
7	Editorial: Special issue on keynote papers from the IS-Glasgow2019 — 7th International Symposium on Deformation Characteristics of Geomaterials. Geomechanics for Energy and the Environment, 2021, 27, 100248.	1.2	O
8	Permeability assessment of some granular mixtures. Geotechnique, 2020, 70, 845-847.	2.2	5
9	Permeability assessment of some granular mixtures. Geotechnique, 2019, 69, 646-654.	2.2	22
10	A sand-rubber deformable granular layer as a low-cost seismic isolation strategy in developing countries: Experimental investigation. Soil Dynamics and Earthquake Engineering, 2019, 125, 105731.	1.9	91
11	A numerical and experimental study of sand-rubber mixtures subjected to oedometric compression. E3S Web of Conferences, 2019, 92, 14010.	0.2	1
12	Acoustic emission monitoring of crushing of an analogue granular material. Geotechnique Letters, 2019, 9, 305-313.	0.6	4
13	Stiffness of lightly cemented sand under multiaxial loading. E3S Web of Conferences, 2019, 92, 11008.	0.2	1
14	AE Signature Interpretation of Single Particle Crushing under Uniaxial Compression. E3S Web of Conferences, 2019, 92, 09005.	0.2	0
15	Artificially cemented sand under multiaxial loading. E3S Web of Conferences, 2019, 92, 11011.	0.2	1
16	Comparison of Prediction Models for the Permeability of Granular Materials Using a Database. Sustainable Civil Infrastructures, 2019, , 1-13.	0.1	3
17	Strength anisotropy of fibre-reinforced sands under multiaxial loading. Geotechnique, 2019, 69, 203-216.	2.2	26
18	Developing an Experimental Strategy to Investigate Stress-Strain Models Using Kaolin. Sustainable Civil Infrastructures, 2019, , 99-118.	0.1	1

#	Article	IF	CITATIONS
19	Modelling tensile/compressive strength ratio of artificially cemented clean sand. Soils and Foundations, 2018, 58, 199-211.	1.3	56
20	Compacted Chalk Putty–Cement Blends: Mechanical Properties and Performance. Journal of Materials in Civil Engineering, 2018, 30, 04017266.	1.3	9
21	Modelling tensile/compressive strength ratio of fibre reinforced cemented soils. Geotextiles and Geomembranes, 2018, 46, 155-165.	2.3	68
22	Evaluation of Rocking and Coupling Rotational Linear Stiffness Coefficients of Adjacent Foundations. International Journal of Geomechanics, $2018,18,.$	1.3	6
23	Sand–rubber mixtures undergoing isotropic loading: derivation and experimental probing of a physical model. Granular Matter, 2018, 20, 1.	1.1	23
24	Energy efficiency of fibre reinforced soil formation at small element scale: Laboratory and numerical investigation. Geotextiles and Geomembranes, 2018, 46, 497-510.	2.3	11
25	Assessing the hydraulic conductivity of road paving materials using representative pore size and grading entropy. Ce/Papers, 2018, 2, 871-876.	0.1	5
26	Theoretical Derivation of Artificially Cemented Granular Soil Strength. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2017, 143, .	1.5	78
27	Construction of simplified design <i>p</i> â€" <i>y</i> curves for liquefied soils. Geotechnique, 2017, 67, 216-227.	2.2	48
28	Sand – rubber mixtures submitted to isotropic loading: a minimal model. EPJ Web of Conferences, 2017, 140, 12015.	0.1	0
29	3D fibre architecture of fibre-reinforced sand. Granular Matter, 2017, 19, 75.	1.1	29
30	Fibre-reinforced granular soils behaviour: Numerical approach. , 2017, , 443-448.		5
31	A Sole Empirical Correlation Expressing Strength of Fine-Grained Soils - Lime Mixtures. Soils and Rocks, 2017, 40, 147-153.	0.2	8
32	Micromechanics of seismic wave propagation in granular materials. Granular Matter, 2016, $18,1.$	1.1	38
33	Fibres and soils: A route towards modelling of root-soil systems. Soils and Foundations, 2016, 56, 765-778.	1.3	39
34	Shake table testing of the dynamic interaction between two and three adjacent buildings (SSSI). Soil Dynamics and Earthquake Engineering, 2016, 89, 219-232.	1.9	59
35	Elasto-plastic model for sand including time effect. Geotechnique Letters, 2016, 6, 16-22.	0.6	2
36	Two dimensional numerical and experimental models for the study of structure–soil–structure interaction involving three buildings. Computers and Structures, 2015, 150, 79-91.	2.4	65

#	Article	IF	Citations
37	Quantitative assessment of the influence of surface roughness on soil stiffness. Geotechnique, 2015, 65, 694-700.	2.2	65
38	Fibre-reinforced sand: interaction at the fibre and grain scale. Geotechnique, 2015, 65, 296-308.	2.2	71
39	Modelling of fibre–cohesive soil mixtures. Acta Geotechnica, 2014, 9, 1029-1043.	2.9	43
40	Fibre reinforced sands: from experiments to modelling and beyond. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 2427-2455.	1.7	60
41	A simple discrete model for interaction of adjacent buildings during earthquakes. Computers and Structures, 2013, 124, 1-10.	2.4	53
42	Experimental and numerical assessment of a cubical sample produced by pluviation. Geotechnique Letters, 2013, 3, 44-51.	0.6	8
43	Characterization of artificial spherical particles for DEM validation studies. Particuology, 2012, 10, 209-220.	2.0	46
44	Assessment of laboratory sample preparation for fibre reinforced sands. Geotextiles and Geomembranes, 2012, 34, 69-79.	2.3	80
45	Modelling the Undrained Response of Fibre Reinforced Sands. Soils and Foundations, 2011, 51, 625-636.	1.3	30
46	Static liquefaction of fibre reinforced sand under monotonic loading. Geotextiles and Geomembranes, 2010, 28, 374-385.	2.3	109
47	Localised deformation patterning in 2D granular materials revealed by digital image correlation. Granular Matter, 2010, 12, 1-14.	1.1	101
48	Fibre reinforced sands: Experiments and modelling. Geotextiles and Geomembranes, 2010, 28, 238-250.	2.3	211
49	Strain path controlled shear tests on an analogue granular material. Geotechnique, 2010, 60, 545-559.	2.2	20
50	Time-Dependent Behaviour and Static Liquefaction Phenomenon of Sand. Geotechnical and Geological Engineering, 2009, 27, 181-191.	0.8	7
51	Determination of fibre orientation distribution in reinforced sands. Geotechnique, 2007, 57, 623-628.	2.2	92
52	Behaviour of Sand Reinforced with Fibres. Solid Mechanics and Its Applications, 2007, , 807-818.	0.1	29
53	In situ experiments and beam modelling of existing buildings. Revue Européenne De Génie Civil, 2005, 9, 263-280.	0.0	0
54	In situ experiments and seismic analysis of existing buildings. Part I: experimental investigations. Earthquake Engineering and Structural Dynamics, 2005, 34, 1513-1529.	2.5	68

#	Article	IF	Citations
55	In situ experiments and seismic analysis of existing buildings. Part II: Seismic integrity threshold. Earthquake Engineering and Structural Dynamics, 2005, 34, 1531-1546.	2.5	54
56	New Local System of Measurement of Axial Strains for Triaxial Apparatus Using LVDT. Geotechnical Testing Journal, 2005, 28, 11630.	0.5	6
57	Minimum undrained strength of Hostun RF sand. Geotechnique, 2000, 50, 377-392.	2.2	28
58	DAMPING IDENTIFICATION IN MULTI-DEGREE-OF-FREEDOM SYSTEM VIA A WAVELET-LOGARITHMIC DECREMENTâ€"PART 2: STUDY OF A CIVIL ENGINEERING BUILDING. Journal of Sound and Vibration, 2000, 235, 375-403.	2.1	34
59	Pour une approche expérimentale de la vulnérabilité sismique. Revue Européenne De Génie Civil, 2000 4, 683-714.	^{),} o.o	4
60	Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 1: experimental observations. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 2, 47-70.	1.0	82
61	Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 1: experimental observations. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 2, 47-70.	1.0	2
62	Exploration of Structure-Soil-Structure Interaction Dynamics. , 0, , .		0